• 제목/요약/키워드: Linear operator

검색결과 504건 처리시간 0.027초

JOINT SPATIAL NUMERICAL RANGES OF OPERATORS ON BANACH SPACES

  • Yang, Youngoh
    • 대한수학회보
    • /
    • 제26권2호
    • /
    • pp.119-126
    • /
    • 1989
  • Throughout this paper, X will always denote a Banach space over the complex numbers C, and L(X) will denote the Banach algebra of all continuous linear operators on X. Operator will always mean continuous linear operator. An n-tuple of operators T$_{1}$,..,T$_{n}$ on X will be denoted by over ^ T=(T$_{1}$,..,T$_{n}$ ). Let L$^{n}$ (X) be the set of all n-tuples of operators on X. X' will denote the dual space of X, S(X) its unit sphere and .PI.(X) the subset of X*X' defined by .PI.(X)={(x,f).mem.X*X': ∥x∥=∥f∥=f(x)=1}.

  • PDF

ON APPROXIMATION PROPERTIES OF BALAZS-SZABADOS OPERATORS AND THEIR KANTOROVICH EXTENSION

  • Agratini, Octavian
    • Journal of applied mathematics & informatics
    • /
    • 제9권2호
    • /
    • pp.531-542
    • /
    • 2002
  • In this paper we deal with a sequence of positive linear operators ${{R_n}}^{[$\beta$]}$ approximating functions on the unbounded interval [0, $\infty$] which were firstly used by K. balazs and J. Szabados. We give pointwise estimates in the framework of polynomial weighted function spaces. Also we establish a Voronovskaja type theorem in the same weighted spaces for ${{K_n}}^{[$\beta$]}$ operators, representing the integral generalization in Kantorovich sense of the ${{R_n}}^{[$\beta$]}$.

EXTREME SETS OF RANK INEQUALITIES OVER BOOLEAN MATRICES AND THEIR PRESERVERS

  • Song, Seok Zun;Kang, Mun-Hwan;Jun, Young Bae
    • 대한수학회논문집
    • /
    • 제28권1호
    • /
    • pp.1-9
    • /
    • 2013
  • We consider the sets of matrix ordered pairs which satisfy extremal properties with respect to Boolean rank inequalities of matrices over nonbinary Boolean algebra. We characterize linear operators that preserve these sets of matrix ordered pairs as the form of $T(X)=PXP^T$ with some permutation matrix P.

IMAGE DEBLURRING USING GLOBAL PCG METHOD WITH KRONECKER PRODUCT PRECONDITIONER

  • KIM, KYOUM SUN;YUN, JAE HEON
    • Journal of applied mathematics & informatics
    • /
    • 제36권5_6호
    • /
    • pp.531-540
    • /
    • 2018
  • We first show how to construct the linear operator equations corresponding to Tikhonov regularization problems for solving image deblurring problems with nearly separable point spread functions. We next propose a Kronecker product preconditioner which is suitable for the global PCG method. Lastly, we provide numerical experiments of the global PCG method with the Kronecker product preconditioner for several image deblurring problems to evaluate its effectiveness.

LINEAR PRESERVERS OF SPANNING COLUMN RANK OF MATRIX SUMS OVER SEMIRINGS

  • Song, Seok-Zun
    • 대한수학회지
    • /
    • 제45권2호
    • /
    • pp.301-312
    • /
    • 2008
  • The spanning column rank of an $m{\times}n$ matrix A over a semiring is the minimal number of columns that span all columns of A. We characterize linear operators that preserve the sets of matrix pairs which satisfy additive properties with respect to spanning column rank of matrices over semirings.

ON SOME PROPERTIES OF BARRIERS AT INFINITY FOR SECOND ORDER UNIFORMLY ELLIPTIC OPERATORS

  • Cho, Sungwon
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제25권2호
    • /
    • pp.59-71
    • /
    • 2018
  • We consider the boundary value problem with a Dirichlet condition for a second order linear uniformly elliptic operator in a non-divergence form. We study some properties of a barrier at infinity which was introduced by Meyers and Serrin to investigate a solution in an exterior domains. Also, we construct a modified barrier for more general domain than an exterior domain.

SPANNING COLUMN RANK PRESERVERS OF INTEGER MATRICES

  • Kang, Kyung-Tae;Song, Seok-Zun
    • 호남수학학술지
    • /
    • 제29권3호
    • /
    • pp.427-443
    • /
    • 2007
  • The spanning column rank of an $m{\times}n$ integer matrix A is the minimum number of the columns of A that span its column space. We compare the spanning column rank with column rank of matrices over the ring of integers. We also characterize the linear operators that preserve the spanning column rank of integer matrices.

Sets of Integer Matrix Pairs Derived from Row Rank Inequalities and Their Preservers

  • Song, Seok-Zun;Jun, Young-Bae
    • Kyungpook Mathematical Journal
    • /
    • 제53권2호
    • /
    • pp.273-283
    • /
    • 2013
  • In this paper, we consider the row rank inequalities derived from comparisons of the row ranks of the additions and multiplications of nonnegative integer matrices and construct the sets of nonnegative integer matrix pairs which is occurred at the extreme cases for the row rank inequalities. We characterize the linear operators that preserve these extreme sets of nonnegative integer matrix pairs.

THE DRAZIN INVERSE OF THE SUM OF TWO PRODUCTS

  • Chrifi, Safae Alaoui;Tajmouati, Abdelaziz
    • 대한수학회논문집
    • /
    • 제37권3호
    • /
    • pp.705-718
    • /
    • 2022
  • In this paper, for bounded linear operators A, B, C satisfying [AB, B] = [BC, B] = [AB, BC] = 0 we study the Drazin invertibility of the sum of products formed by the three operators A, B and C. In particular, we give an explicit representation of the anti-commutator {A, B} = AB + BA. Also we give some conditions for which the sum A + C is Drazin invertible.