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IMAGE DEBLURRING USING GLOBAL PCG METHOD

WITH KRONECKER PRODUCT PRECONDITIONER†
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Abstract. We first show how to construct the linear operator equations

corresponding to Tikhonov regularization problems for solving image de-

blurring problems with nearly separable point spread functions. We next
propose a Kronecker product preconditioner which is suitable for the global

PCG method. Lastly, we provide numerical experiments of the global PCG

method with the Kronecker product preconditioner for several image de-
blurring problems to evaluate its effectiveness.
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1. Introduction

Image deblurring is the fundamental problem in image processing which recov-
ers a true image from a blurry and noisy image. The problem of image deblurring
usually reduces to solving the following Tikhonov regularization problem which
is to solve a minimization problem of the form

min
x∈RN

{
‖Ax− b‖22 + λ2‖Dx‖22

}
, (1)

where λ > 0 is a regularization parameter which controls a balance between the
data-fitting term ‖Ax − b‖22 and the regularization term ‖Dx‖22, x ∈ RN and
b ∈ RN represent the original and observed images respectively, A ∈ RN×N is
a blurring matrix, and D ∈ RN×N is a regularization matrix which is a finite
difference approximation of the first or second order partial derivative operators
[2, 4, 5].
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The purpose of this paper is to propose how to solve the Tikhonov regulariza-
tion problem (1) using the global preconditioned conjugate gradient (G`-PCG)
method [14] when A and D are nearly separable. This paper is organized as
follows. In Section 2, we introduce some definitions and properties which are
used in this paper. In Section 3, we first show how to construct linear operator
equation corresponding to a regularization matrix D in the Tikhonov regular-
ization problem (1) when A and D can be represented or well approximated
by Kronecker products of two small matrtices [7, 9], and then we propose a
Kronecker product preconditioner which is required for accelerating the global
conjugate gradient (G`-CG) method [12]. In Section 4, we provide numerical ex-
periments of the G`-PCG with the Kronecker product preconditioner for several
image deblurring problems, and its performance is evaluated by comparing its
numerical results with those of the G`-CG and PCGLS [1, 10] methods. Lastly,
some conclusions are drawn.

2. Preliminaries

Let X ∈ Rm×n and B ∈ Rm×n represent the original and observed images,
respectively. We first introduce the operator vec which transforms a matrix
C ∈ Rm×n into a long vector c ∈ Rmn by stacking the columns of C from left
to right, that is,

c = vec(C) = (cT1 , c
T
2 , . . . , c

T
n )T ∈ Rmn

where ci is the ith column of C. Then the Tikhonov regularization problem (1)
is mathematically equivalent to solving the following linear equation(

ATA+ λ2DTD
)
x = AT b, (2)

where x = vec(X) and b = vec(B). Since the size of the original image X is
m×n, the size of blurring matrix A is mn×mn, which is very large and sparse
when m and n are large. So, the linear system (2) is usually solved using iterative
methods such as PCGLS, PLSQR and other variants of iterative method based
on least squares problem [1, 3, 10, 11].

Notice that the blurring matrix A is determined by the point spread function
(PSF) and the boundary condition imposed outside of the image. In this paper,
we only consider the reflexive boundary condition which usually represents real
situations well. If a PSF P can be expressed as an outer product of two vec-
tors, then the PSF P is called separable. If a PSF is separable, then A can be
represented by the Kronecker product of Ar and Ac, i.e. A = Ar ⊗ Ac, where
Ar ∈ Rn×n and Ac ∈ Rm×m. Here, the matrix A satisfying A = Ar ⊗ Ac is
also called separable. If A and D are separable, then the large sparse linear
system (2) can be transformed into the small size of matrix equations which are
generated from Ar and Ac. For this reason, we want to study how to solve the
small size of matrix equations instead of solving the large sparse linear system
(2). Constructing such small size of matrix equations will be discussed in the
next section.
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For matrices X and Y ∈ Rm×n, the Frobenius inner product of X and Y
is defined by 〈X, Y 〉F = tr(XTY ), and the corresponding Frobenius norm of

X ∈ Rm×n is defined by ‖X‖F =
√
〈X,X〉F , where tr(XTY ) denotes the trace

of XTY . It is well-known that if A ∈ Rm×n, B ∈ Rn×m and C ∈ Rn×n, then
tr(AB) = tr(BA) and tr(C) =

∑n
i=1 λi, where λ1, λ2, · · · , λn are the eigenvalues

of C [8].
Let H be a Hilbert space. A bounded linear operator T : H → H is

called self-adjoint if T ∗ = T , where T ∗ is the adjoint operator of T . It is
well-known that a bounded linear operator T : H → H is self-adjoint if and
only if 〈T x, y〉 = 〈x, T y〉 for all x, y ∈ H [6]. A self-adjoint operator T :
Rm×n → Rm×n is said to be positive definite on a subset S of Rm×n if
〈X, T (X)〉F > 0 for all nonzero X ∈ S.

3. Linear Operator equation for D corresponding to ‖xss‖22 + ‖xtt‖22
We consider the Tikhonov regularization problem (1) for the case where D is

a finite difference approximate matrix corresponding to ‖xss‖22 + ‖xtt‖22, where
s and t denote the variables in the vertical direction and the horizontal direc-
tion, respectively. We first introduce how to construct linear operator equation
corresponding to the regularization matrix D, and then we propose a Kronecker
product preconditioner which is suitable for the global preconditioned conjugate
gradient (G`-PCG) method. We assume that the blurring matrix A is nearly sep-
arable, that is, A = Ar⊗Ac or A ≈ Ar⊗Ac, where Ar ∈ Rn×n and Ac ∈ Rm×m.
For simplicity of exposition, we only consider the case of A = Ar ⊗Ac.

Let D2,m and D2,n be m×m and n×n matrices obtained by finite difference
approximations to the second order partial derivatives xss and xtt [5]. That is,
when m = 4, the matrix D2,m is given by

D2,m =


1 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 1

.
Consider the matrix D in the Tikhonov regularization problem (1) such that
‖Dx‖22 = ‖xss‖22 + ‖xtt‖22. Then we can easily obtain

‖Dx‖22 =

∥∥∥∥∥
(
xss
xtt

)∥∥∥∥∥
2

2

=

∥∥∥∥∥
(
(In ⊗D2,m)x

(D2,n ⊗ Im)x

)∥∥∥∥∥
2

2

= ‖(In ⊗D2,m)x‖22 + ‖(D2,n ⊗ Im)x‖22.

Thus, (1) can be transformed into the following form

min
x∈RN

{
‖Ax− b‖22 + λ2‖(In ⊗D2,m)x‖22 + λ2‖(D2,n ⊗ Im)x‖22

}
= min

x∈RN


∥∥∥∥∥∥∥
 A

λDs

λDt

x−

b0
0


∥∥∥∥∥∥∥
2

2

 , (3)
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where Ds = In ⊗ D2,m and Dt = D2,n ⊗ Im. It is easy to show that the
minimization problem (3) is equivalent to solving the following equation(

ATA+ λ2DT
s Ds + λ2DT

t Dt

)
x = AT b. (4)

Since A = Ar ⊗Ac, Ds = In ⊗D2,m and Dt = D2,n ⊗ Im, the linear system (4)
can be rewritten as{
AT

r Ar ⊗AT
c Ac + λ2(In ⊗DT

2,mD2,m) + λ2(DT
2,nD2,n ⊗ Im)

}
x = (AT

r ⊗AT
c )b.

(5)
From (5), the following matrix equation can be obtained

(AT
c Ac)X(AT

r Ar) + λ2
(
(DT

2,mD2,m)X +X(DT
2,nD2,n)

)
= AT

c BAr, (6)

where B ∈ Rm×n is a matrix such that b = vec(B). Let us define the linear
operator A2 : Rm×n → Rm×n given by

A2(X) = (AT
c Ac)X(AT

r Ar) + λ2
(
(DT

2,mD2,m)X +X(DT
2,nD2,n)

)
. (7)

Then (6) can be expressed as the following operator equation

A2(X) = AT
c BAr. (8)

The following theorem shows that A2 is self-adjoint and positive definite on a
subset of Rm×n.

Theorem 3.1. Suppose that at least one column of X is not a constant vector.
Then the operator A2 is self-adjoint and 〈X,A2(X)〉F > 0.

Proof. For all X and Y in Rm×n,

〈A2(X), Y 〉F =
〈
AT

c AcXA
T
r Ar + λ2(DT

2,mD2,mX +XDT
2,nD2,n), Y

〉
F

= tr
(
AT

r ArX
TAT

c AcY + λ2(XTDT
2,mD2,mY +DT

2,nD2,nX
TY )

)
= tr

(
XTAT

c AcY A
T
r Ar

)
+ λ2

(
tr(XTDT

2,mD2,mY ) + tr(XTY DT
2,nD2,n)

)
= tr

(
XT (AT

c AcY A
T
r Ar + λ2(DT

2,mD2,mY + Y DT
2,nD2,n))

)
=
〈
X, AT

c AcY A
T
r Ar + λ2(DT

2,mD2,mY + Y DT
2,nD2,n)

〉
F

= 〈X,A2(Y )〉F .

Hence, the operator A2 is self-adjoint. For each X ∈ Rm×n and X 6= O,

〈X,A2(X)〉F = tr
(
XT (AT

c AcXA
T
r Ar + λ2(DT

2,mD2,mX +XDT
2,nD2,n))

)
= tr

(
XTAT

c AcXA
T
r Ar

)
+ λ2

(
tr(XTDT

2,mD2,mX) + tr(XTXDT
2,nD2,n)

)
= tr(AcXA

T
r ArX

TAT
c ) + λ2

(
tr(XTDT

2,mD2,mX) + tr(XDT
2,nD2,nX

T )
)

= tr
(
(ArX

TAT
c )

T (ArX
TAT

c )
)

+ λ2
{
tr
(
(D2,mX)T (D2,mX)

)
+ tr

(
(D2,nX

T )T (D2,nX
T )
)}

= ‖ArX
TAT

c ‖2F + λ2
(
‖D2,mX‖2F + ‖D2,nX

T ‖2F
)
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Since at least one column of X is not a constant vector, D2,mX 6= O and
D2,nX

T 6= O. Hence ‖D2,mX‖2F > 0 and ‖D2,nX
T ‖2F > 0. It follows that

〈X,A2(X)〉F > 0, which completes the proof. �

In order to accelerate the convergence of the G`-CG, a good choice of precon-
ditioner corresponding to the operator equation (8) is required. From the left
side of the linear system (5), one can obtain the following approximate relation(

AT
r Ar ⊗AT

c Ac + λ2(I ⊗DT
2,mD2,m) + λ2(DT

2,nD2,n ⊗ I)
)
x

≈
(
AT

r Ar + λ(In +DT
2,nD2,n)

)
⊗
(
AT

c Ac + λ(DT
2,mD2,m + Im)

)
x. (9)

From (9), we can choose a Kronecker product preconditioner of the form

M2 = Mr ⊗Mc,

where

Mr = AT
r Ar + λ(In +DT

2,nD2,n) and Mc = AT
c Ac + λ(Im +DT

2,mD2,m).

Then it is clear that Mr ∈ Rn×n and Mc ∈ Rm×m. Now we define a precondi-
tioner operator M2 : Rm×n → Rm×n by

M2(X) = McXM
T
r . (10)

To apply G`-PCG to the operator equation (8), it is required that the precon-
ditioner operator M2 should be self-adjoint and positive definite.

Theorem 3.2. The preconditioner operator M2 in (10) is self-adjoint and pos-
itive definite.

Proof. Since (In+D2,n)T (In+D2,n) and (Im+D2,m)T (Im+D2,m) are symmetric
positive definite, Mr and Mc are symmetric positive definite. For all X, Y ∈
Rm×n,

〈M2(X), Y 〉F =
〈
McXM

T
r , Y

〉
F

= tr
(
MrX

TMT
c Y
)

= tr
(
XTMT

c YMr

)
= 〈X,M2(Y )〉F .

Hence the preconditioner operator M2 is self-adjoint. To show the positive
definiteness of M2, for each X ∈ Rm×n and X 6= O

〈M2(X), X〉F = tr
(
MrX

TMT
c X

)
= tr

(
XTMT

c XMr

)
= tr

(
XTMcXMr

)
.

Since XTMcXMr is similar to M
1
2
r XTMcXM

1
2
r which is symmetric positive

semi-definite, all eigenvalues of XTMcXMr are nonnegative. It follows that

tr
(
XTMcXMr

)
≥ 0. Since Mr and Mc are symmetric positive definite, XM

1
2
r 6=

0 and thus

M
1
2
r X

TMcXM
1
2
r = (XM

1
2
r )TMc(XM

1
2
r )

is a non-zero symmetric matrix. It follows that all eigenvalues of XTMcXMr

are not zero. Hence tr(XTMcXMr) > 0, which implies that M2 is positive
definite. �
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Remark 3.1. Theorems 3.1 assumed that at least one column of X ∈ Rm×n is
not a constant vector. Most cases of practical images X satisfy these assump-
tions, so we may say that A2 is positive definite operators in real situation.

4. Numerical experiments

The G`-PCG algorithm with Kronecker product preconditioners for solving
the linear operator equations has been introduced in [14]. In this section, we
provide numerical experiments of the G`-PCG method for the linear operator
equationA2(X) = B with the Kronecker product preconditionerM2 discussed in
Section 3. Performance of the G`-PCG algorithm is evaluated by comparing its
numerical results with those of the G`-CG and preconditioned CGLS (PCGLS)
methods (see Tables 1 and 2).

All numerical tests have been performed using Matlab R2016b on a personal
computer equipped with Intel Core i5-4570 3.2GHz CPU and 8GB RAM. For
numerical experiments, we have used 3 types of PSFs (point spread functions)
which are S-blur, Motion blur and Disk blur of size 7× 7. The PSF array P for
S-blur of size 7× 7 is given by

K = (1 2 3 4 3 2 1)T ⊗
(

1

4

1

3

1

2
1

1

2

1

3

1

8

)
and P =

K∑7
i,j=1 kij

,

where kij denotes the (i, j)-component of K. The PSF array P for Disk blur of
size 7× 7 is generated by the Matlab function fspecial(′disk′, 3), and the PSF
array P for Motion blur of size 7× 7 is generated by the Matlab function

P = zeros(7); P (3 : 5, :) = fspecial(′motion′, 7, 1).

Notice that S-blur is separable, but Disk blur and Motion blur are nonsepara-
ble. For a nonseparable PSF, we have used a separable PSF which is a rank-1
approximation to the nonseparable PSF using Kronecker product approximation
techniques proposed in [7, 9]. So A can be expressed or approximated as Ar⊗Ac

for all PSFs.
The blurred and noisy image B is generated by vec(B) = A ·vec(X)+vec(E),

where A stands for the blurring matrix which can be generated by the original
PSF array P according to the boundary condition to be used, and E is a Gaussian
white noise. In this paper, we have used the reflexive boundary condition and
the Gaussian white noise E with mean 0 and standard deviation 0.95 which
can be generated using Matlab function E = 0.95× randn(m,n), where (m,n)
denotes the size of the true image X.

The initial image X0 is set to the blurred and noisy image B. The stopping
criterion for iterative methods at the k-th iterate is

‖Rk‖F
‖R0‖F

≤ 5 · 10−3,

where Rk represents the k-th residual matrix corresponding to the k-th iteration
matrix Xk of iterative methods with R0 the initial residual matrix corresponding
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to X0. A restored image G is measured by the PSNR (Peak Signal to Noise
Ratio) which is defined by

PSNR = 10 log10

max
i,j
|xij |2 ·m · n

‖X −G‖2F


where X = (xij) represents the true image.

We have used 2 test images called Cameraman and Jetplane for numerical
experiments. The pixel size of Cameraman image is 256×256, and the pixel size
of Jetplane image is 512 × 512. For the preconditioner of the PCGLS method,
we have chosen the symmetric approximation matrix which can be easily ob-
tained using the DCT2 (2-dimensional discrete Cosine transform) (see [5] for
details). For the PCGLS method, the blurring matrix A whose size is large is
not constructed since its construction is very time-consuming and matrix-vector
multiplication with A can be performed without constructing A (see [4] for de-
tails). For the G`-PCG method, the matrices Ar and Ac whose size is very small
compared to the size of A are constructed.

In Tables 1 and 2, “PSNR” represents the PSNR values for the restored
images, PSNR0 represents the PSNR value for the blurred and noisy image,
“Itime” denotes the elapsed CPU time in seconds required for iteration steps
of G`-CG, G`-PCG, CGLS and PCGLS methods, “IT” denotes the number of
iterations required for G`-CG, G`-PCG and PCGLS methods, and “λ” denotes a
near optimal regularization parameter which is chosen by numerical tries. Notice
that the near optimal values of λ vary from 0.01 to 0.05.

Numerical results are provided in Tables 1 and 2 and Figures 1 to 3. As
can be seen in Tables 1 and 2, G`-CG and G`-PCG with Kronecker product
preconditioners restore the true image as well as PCGLS except for the nonsep-
arable Disk blur. The reason for worse performance for Disk blur is that G`-CG
and G`-PCG use a rank-1 approximation to the Disk blur which is not a good
approximation to the Disk blur.

For all test problems, G`-PCG with Kronecker product preconditioners yields
a superior performance in terms of execution time. Notice that PCGLS has
extremely faster convergence rate since the DCT2 type of symmetric precondi-
tioner is a very good approximation to the original matrix. However PCGLS
takes much more execution time than G`-CG and G`-PCG. The reason is as fol-
lows: Before the first iteration starts, PCGLS computes eigenvalues, using PSF
and FFT2, which are required to perform matrix-vector multiplication with A
without constructing A. So the first iteration takes much more execution time
than the remaining iterations. As compared with the unpreconditioned G`-CG,
Kronecker product preconditioner for G`-PCG proposed in this paper works
extremely well in terms of convergence rate. This means that the Kronecker
product preconditioner is a good approximation to the original matrix since
λ > 0 is chosen to be a small number between 0.01 and 0.05.



538 Kyoum Sun Kim and Jae Heon Yun

Table 1. Numerical results for Cameraman image

PSF Method PSNR0 PSNR λ Itime IT

S

PCGLS

23.67

28.23 0.02 0.26 1

G`-PCG 28.20 0.02 0.06 8

G`-CG 28.16 0.015 0.07 32

Motion

PCGLS

22.81

30.48 0.02 0.29 2

G`-PCG 30.20 0.02 0.05 7

G`-CG 30.06 0.02 0.07 33

Disk

PCGLS

22.85

27.62 0.02 0.25 1

G`-PCG 26.15 0.03 0.06 8

G`-CG 26.22 0.025 0.07 33

Table 2. Numerical results for Jetplane image

PSF Method PSNR0 PSNR λ Itime IT

S

PCGLS

26.92

32.59 0.04 0.50 1

G`-PCG 32.51 0.035 0.27 6

G`-CG 32.53 0.035 0.39 21

Motion

PCGLS

26.97

34.67 0.045 0.66 2

G`-PCG 34.42 0.045 0.26 6

G`-CG 34.17 0.05 0.40 23

Disk

PCGLS

26.31

32.25 0.035 0.50 1

G`-PCG 30.61 0.04 0.26 6

G`-CG 30.71 0.035 0.40 23

(a) Cameraman (b) Jetplane

Fig. 1. True Images

5. Conclusions

In this paper, we have studied application of the G`-PCG with Kronecker
product preconditioners to image deblurring problems with nearly separable
PSFs. G`-CG and G`-PCG with Kronecker product preconditioners restore the
true image as well as PCGLS when the PSF is well approximated by a rank-1
approximation to the PSF. For all test problems, G`-PCG with Kronecker prod-
uct preconditioners yields a superior performance in terms of execution time.
As compared with the unpreconditioned G`-CG, Kronecker product precondi-
tioners for G`-PCG proposed in this paper work extremely well in terms of
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(a) Blurred and noisy image (b) PCGLS (PSNR = 28.23)

(c) G`-CG (PSNR = 28.16) (d) G`-PCG (PSNR = 28.20)

Fig. 2. Cameraman images for S-blur ((b, c, d): restored images)

(a) Blurred and noisy image (b) PCGLS (PSNR = 34.67)

(c) G`-CG (PSNR = 34.17) (d) G`-PCG (PSNR = 34.42)

Fig. 3. Jetplane images for Motion blur ((b, c, d): restored images)
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convergence rate. This means that the Kronecker product preconditioners are
good approximations to the original matrices.
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