• Title/Summary/Keyword: Linear gain

Search Result 978, Processing Time 0.025 seconds

A Linear Precoding Technique for OFDM Systems with Cyclic Delay Diversity

  • Hui, Bing;Chang, Kyung-Hi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.5
    • /
    • pp.253-264
    • /
    • 2008
  • Cyclic delay diversity (CDD) is considered a simple approach to exploit the frequency diversity, to improve the system performance in orthogonal frequency division multiplexing (OFDM) systems. Also, the linear precoding technique can significantly improve the performance of communication systems by exploiting the channel state information (CSI). In order to achieve enhanced performance, we propose applying linear precoding to the conventional CDD-OFDM transmit diversity schemes over Rayleigh fading channels. The proposed scheme works effectively with the accurate CSI in time-division-duplex (TDD) OFDM systems with CDD, where the reciprocity is assumed instead of channel state feedback. For a BER of $10^{-4}$ and the mobility of 3 km/h, simulation results show that a gain of 6 dB is achieved by the proposed scheme over both flat fading and Pedestrian A (Ped A) channels, compared to the conventional CDD-OFDM system. On the other hand, for a mobility of 120 km/h, a gain of 2.7 dB and 3.8 dB is achieved in flat fading and Vehicular A (Veh A) channels, respectively.

Design of the Well-Conditioned Observer - A Linear Matrix Inequality Approach - (Well-Conditioned 관측기 설계 - A Linear Matrix Inequality Approach -)

  • Jung, Jong-Chul;Huh, Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.503-510
    • /
    • 2004
  • In this paper, the well-conditioned observer for a stochastic system is designed so that the observer is less sensitive to the ill-conditioning factors in transient and steady-state observer performance. These factors include not only deterministic uncertainties such as unknown initial estimation error, round-off error, modeling error and sensing bias, but also stochastic uncertainties such as disturbance and sensor noise. In deterministic perspectives, a small value in the L$_{2}$ norm condition number of the observer eigenvector matrix guarantees robust estimation performance to the deterministic uncertainties. In stochastic viewpoints, the estimation variance represents the robustness to the stochastic uncertainties and its upper bound can be minimized by reducing the observer gain and increasing the decay rate. Both deterministic and stochastic issues are considered as a weighted sum with a LMI (Linear Matrix Inequality) formulation. The gain in the well-conditioned observer is optimally chosen by the optimization technique. Simulation examples are given to evaluate the estimation performance of the proposed observer.

A Systematic Gain Tuning of PID Controller Based on the Concept of Time Delay Control

  • Lee, Jeong-Wan
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.39-44
    • /
    • 2008
  • In this paper, through the study of discrete implementation of time delay control (TDC) and PID control algorithm, a new systematic gain selection method for PID controller is proposed. An important advantage of this method is that it may be applied to real systems with very simple and systematic procedure. The proposed method is derived for SISO systems and then extended to MIMO system. Through simulation for the second order non-linear plant and experiment on 2-DOF robot, the effectiveness of the proposed method is confirmed. The proposed method could solve the problem of difficulty in gain tuning of existing PID controller.

The Proposal and Performance Analysis for the Detection Scheme of D-STTD using Iterative Algorithm (반복 알고리즘을 적용한 D-STTD 시스템의 검출 기법 제안 및 성능 분석)

  • Yoon, Gil-Sang;Lee, Jeong-Hwan;You, Cheol-Woo;Hwang, In-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9A
    • /
    • pp.917-923
    • /
    • 2008
  • The D-STTD system obtains the diversity gain through the STTD scheme and the Multiplexing gain through parallel structure of the encoder using the STTD scheme known Alamouti Code. We are difficult to use Combining scheme of the STTD scheme for the D-STTD detection in the decoder because the D-STTD system transmits mutually different data in each other STTD encoder for multiplexing gain. Therefore, in this paper we combine the D-STTD system with Linear algorithm, SIC algorithm and OSIC algorithm known multiplexing detection scheme based on MMSE scheme and compare the performance of each system. And we propose the detection scheme of the D-STTD using MAP Algorithm and analyze the performance of each system. The simulation results show that the detector using iterative algorithm has better performance than Linear MMSE Detector. Especially, we show that the detector using MAP algorithm outperforms conventional detector.

Model-based Gain Scheduling Strategy for Air-to-fuel Ratio Control Algorithm of Passenger Car Diesel Engines (승용디젤엔진의 공연비 제어 알고리즘을 위한 모델기반 게인 스케줄링 전략에 대한 연구)

  • Park, Inseok;Hong, Seungwoo;Sunwoo, Myoungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.56-64
    • /
    • 2015
  • This study presents a model-based gain scheduling strategy for PI-based EGR controllers. The air-to-fuel ratio is used as an indirect measurement of the EGR rate. In order to cope with the nonlinearity and parameter varying characteristics of the EGR system, we proposed a static gain model of the EGR system using a new scheduling parameter. With the 810 steady-state measurements, the static gain model achieved 0.94 of R-squared value. Based on the static gain of the EGR system, the PI gains were robustly designed using quantitative feedback theory. Consequently, the gains of the PI controller are scheduled according to the static gain parameter of the EGR path in runtime. The proposed model-based gain scheduling strategy was validated through various operating conditions of engine experiments such as setpoint step responses and disturbance rejections.

Design of CMOS OTA-C Integrator with a Wide Linear Input Range

  • Shin, Yun-Tae;Ahn, Joung-Cheol;Shin, Kyoo-Jae;Kim, Dong-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.465-468
    • /
    • 1988
  • A n-well CMOS Operational Transconductance Amplifier -C(OTA-C) integrator with a wide linear input range is designed. The circuit designed has superior linearity of input voltage range compared with the conventional source-coupled pair OTA. The OTA developed in this paper is versatile in application: diverse applications are in the fields of linear amplifiers, continuous-time filters, gain control circuits, and analog multipliers, etc..

  • PDF

Guaranteed Performance Control of Uncertain Linear Systems via Constant Gain State Feedback (고정이득 상태귀환을 통한 불확정 선형 시스템의 성능보장제어)

  • 이정문;최계근
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.6
    • /
    • pp.956-960
    • /
    • 1987
  • This paper investigates the control problem which is specified by an uncertain linear system and a linear quadratic performance index. Only the size of parameter uncertainty is assumed to be given instead of its statistics. In addition, a mathing condition which constrains the system structure is assumed to be satisfied. The control law can be obtained by solving an LQ optimal control problem for a nominal system.

  • PDF

Design of Minimum Variance Fault Diagnosis Filter for Linear Discrete-Time Stochastic Systems with Unknown Inputs (미지입력이 존재하는 선형 이산 활률 시스템의 최소 분산 고장 진단 필터의 설계)

  • ;Zeungnam Bien
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.8
    • /
    • pp.39-46
    • /
    • 1994
  • In this paper a state reconstruction filter for linear discrete-time stochastic systems with unknown inputs and noises is presented. The suggested filter can estimate the system state vector and the unknown inputs simultaneously As an extension of the filter a fault diagnosis filter for linear discrete-time stochastic systems with unknown inputs and noises is presented for each filters the optimal gain determination methods which minimize the variance of the state reconstruction errorare presented. Finally the usability of the filtersis shown via numerical examples.

  • PDF

Eigenstructure Assignment for Linear Time-Varying Systems: a Differential Sylvester Equation Approach (미분 Sylvester 방정식을 이용한 선형 시변 시스템의 고유구조 지정기법)

  • 최재원;이호철
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.777-786
    • /
    • 1999
  • This work is concerned with the assignment of the desired eigenstructure for linear time-varying systems such as missiles, rockets, fighters, etc. Despite its well-known limitations, gain scheduling control appeared to be the focus of the research efforts. Scheduling of frozen-time, frozen-state controller for fast time-varying dynamics is known to be mathematically fallacious, and practically hazardous. Therefore, recent research efforts are being directed towards applying time-varying controllers. In this paper, ⅰ) we introduce a differential algebraic eigenvalue theory for linear time-varying systems, and ⅱ) we also propose an eigenstructure assignment scheme for linear time-varying systems via the differential Sylvester equation based upon the newly developed notions. The whole design procedure of the proposed eigenstructure assignment scheme is very systematic, and the scheme could be used to determine the stability of linear time-varying systems easily as well as provides a new horizon of designing controllers for the linear time-varying systems. The presented method is illustrated by a numerical example.

  • PDF

Improvement of Gain and Frequency Characteristics of the CMOS Low-voltage Current-mode Integrator (CMOS 저전압 전류모드 적분기의 이득 및 주파수 특성 개선)

  • Ryu, In-Ho;Song, Je-Ho;Bang, Jun-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3614-3621
    • /
    • 2009
  • In this paper, A CMOS low-voltage current mode integrator is designed. The designed current-mode integrator is based on linear cascode circuit that is newly proposed in this paper. When it is compared with gain(43.7dB) and unity gain frequency(15.2MHz) of the typical current-mirror type current-mode integrator, the proposed linear cascode current-mode integrator achieves high current gain(47.8dB) and unity gain frequency(27.8MHz). And a 5th Chebyshev current-mode filter with 7.03MHz cutoff frequency is designed. The designed all circuits are simulated by HSPICE using 1.8V-$0.18{\mu}m$ CMOS technology.