• Title/Summary/Keyword: Linear feedback control systems

Search Result 553, Processing Time 0.029 seconds

Liner Analysis of IMV Proportional Flow Control Valve Static Characteristics (IMV 비례 유량제어밸브 정특성 선형해석)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.56-64
    • /
    • 2019
  • Recently, as the environmental regulation for earth moving equipment has been tightened, advanced systems using electronic control have been introduced for energy savings. An IMV(Independent Metering Valve), which consists of four 2-way valves, is one of the electro-hydraulic control systems that provides more flexible controllability and potential for energy savings in excavators, when compared to the conventional 4-way spool valve system. To fully realize an IMV, a two-stage bi-directional flow control valve which can regulate the large amount of flow in both directions, should be developed in advance. A simple design that allows proportional flow control to apply the pilot pressure from the current-controlled solenoid to the spring loaded flow control spool and thus valve displacement, is proportional to the solenoid current. However, this open-loop type valve is vulnerable to flow force which directly affects the valve displacement. Force feedback servo of which the position loop is closed by the feedback spring which interconnects the solenoid valve and flow control spool, could compensate for the flow force. In this study, linearity for the solenoid current input and robustness against load pressure disturbance is investigated by linear analysis of the static nonlinear equations for the IMV proportional flow control valve with feedback spring. Gains of the linear system confirm the performance improvement with the feedback spring design.

Robust Stabilization of Uncertain LTI Systems via Observer Model Selection (관측기 모델 선정을 통한 모델 불확실성을 갖는 선형 시불변 시스템 강인 안정화)

  • Oh, Sangrok;Kim, Jung-Su;Shim, Hyungbo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.822-827
    • /
    • 2014
  • This paper presents a robust observer-based output feedback control for stabilization of linear time invariant systems with polytopic uncertainties. To this end, this paper not only finds a robust observer gain but also suggests how to determine the model used in the observer, which is not obvious due to model uncertainties in the conventional observer design method. The robust observer gain and the observer model are selected in a way that the whole closed-loop is stable by solving LMIs and BMIs (Linear Matrix Inequalities and Bilinear Matrix Inequalities). A simulation example shows that the proposed robust observer-based output feedback control successfully leads to closed-loop stability.

Observer-based Control for Switched Linear Systems (선형 스위칭 시스템의 관측기 기반 제어)

  • Yeom, Dong-Hae;Im, Ki-Hong;Choi, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.92-94
    • /
    • 2004
  • In the previous work, we proposed a new stability criterion for the stability of switched linear systems. By the proposed criterion, we could simply check the stability of switched linear systems because the criterion is applicable to each individual subsystem without need to consider the overall system. Using this criterion, we provided the methods that design a state feedback control when full states are available. In this paper, we apply the same criterion to the case when full states are not available. Unlike existing method such as dwelling time analysis, the proposed method is suitable to a fast switching process because there is no need to consider dwelling time. And we can easily achieve designing multi-controller, multi-estimator, and the supervisor by means of the proposed method.

  • PDF

QFT Parameter-Scheduling Control Design for Linear Time- varying Systems Based on RBF Networks

  • Park, Jae-Weon;Yoo, Wan-Suk;Lee, Suk;Im, Ki-Hong;Park, Jin-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.484-491
    • /
    • 2003
  • For most of linear time-varying (LTV) systems, it is difficult to design time-varying controllers in analytic way. Accordingly, by approximating LTV systems as uncertain linear time-invariant, control design approaches such as robust control have been applied to the resulting uncertain LTI systems. In particular, a robust control method such as quantitative feedback theory (QFT) has an advantage of guaranteeing the frozen-time stability and the performance specification against plant parameter uncertainties. However, if these methods are applied to the approximated linear. time-invariant (LTI) plants with large uncertainty, the resulting control law becomes complicated and also may not become ineffective with faster dynamic behavior. In this paper, as a method to enhance the fast dynamic performance of LTV systems with bounded time-varying parameters, the approximated uncertainty of time-varying parameters are reduced by the proposed QFT parameter-scheduling control design based on radial basis function (RBF) networks.

A Nonlinear Transformation Approach to Adaptive Output Feedback Control of Uncertain Nonlinear Systems

  • Ahn, Choon-Ki;Kim, Beom-Soo;Lim, Myo-Taeg
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.48.1-48
    • /
    • 2001
  • In this paper, we present a global adaptive output feedback control scheme for a class of uncertain nonlinear systems to which adaptive observer backstepping method may not be applicable directly. The allowed output feedback structure includes quadratic and multiplicative dependency of unmeasured states. Our novel design technique employs a change of coordinates and adaptive backstepping. With these proposed tools, we can remove linear and quadratic dependence on the unmeasured states in the state equation. Also, the multiplication of the two unmeasured states can be eliminated ...

  • PDF

Fuzzy Output-Feedback Controller Design for PEMFC: Discrete-time Nonlinear Interconnected Systems with Common Inputs Approach (고분자 전해질 연료전지 시스템의 퍼지 출력 궤환 제어기 설계: 공통 입력을 갖는 이산시간 비선형 상호결합 시스템 접근)

  • Koo, Geun-Bum;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.851-856
    • /
    • 2011
  • In this paper, the fuzzy output-feedback controller is addressed for a discrete-time nonlinear interconnected systems with common input. The nonlinear interconnected system is represented by a T-S (Takagi-Sugeno) fuzzy model. Based on T-S fuzzy interconnected system, the fuzzy output-feedback controller is designed with common input. The stability condition of the closed-loop system is represented to the LMI (Linear Matrix Inequality) form. PEMFC model is given to show the verification of the controller discussed throughout the paper.

Robust Fuzzy Feedback Linearization Control Based on Takagi-Sugeno Fuzzy Models

  • Park, Chang-Woo;Park, Mignon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.356-362
    • /
    • 2002
  • In this paper, well-known Takagi-Sugeno fuzzy model is used as the nonlinear plant model and uncertainty is assumed to be included in the model structure with known bounds. Based on the fuzzy models, a numerical robust stability analysis for the fuzzy feedback linearization regulator is presented using Linear Matrix Inequalities (LMI) Theory. For these structured uncertainty, the closed system can be cast into Lur'e system by simple transformation. From the LMI stability condition for Lur'e system, we can derive the robust stability condition for the fuzzy feedback linearization regulator based on Takagi-Sugeno fuzzy model. The effectiveness of the proposed analysis is illustrated by a simple example.

A New Approach to Design of a Dynamic Output Feedback Stabilizing Control Law for LTI Systems

  • Son Young-Ik;Shim Hyungbo;Jo Nam-Hoon;Kim Kab-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.618-624
    • /
    • 2005
  • We present a new state-space approach to construct a dynamic output feedback controller which stabilizes a class of linear time invariant systems. All the states of the given system are not measurable and only the output is used to design the stabilizing control law. In the design scheme, however, we first assume that the given system can be stabilized by a feedback law composed of the output and its derivatives of a certain order. Beginning with this assumption, we systematically construct a dynamic system which removes the need of the derivatives. The main advantage of the proposed controller is regarding the controller order, which may be smaller than that of conventional output feedback controller. Using a simple numerical example, it is shown that the order of the proposed controller is indeed smaller than that of reduced-order observer based output feedback controller.

Rank-constrained LMI Approach to Simultaneous Linear Quadratic Optimal Control Design (계수조건부 LMI를 이용한 동시안정화 LQ 최적제어기 설계)

  • Kim, Seog-Joo;Cheon, Jong-Min;Kim, Jong-Moon;Kim, Chun-Kyung;Lee, Jong-Moo;Kwon, Soom-Nam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1048-1052
    • /
    • 2007
  • This paper presents a rank-constrained linear matrix inequality(LMI) approach to simultaneous linear-quadratic(LQ) optimal control by static output feedback. Simultaneous LQ optimal control is formulated as an LMI optimization problem with a nonconvex rank condition. An iterative penalty method recently developed is applied to solve this rank-constrained LMI optimization problem. Numerical experiments are performed to illustrate the proposed method, and the results are compared with those of previous work.

Controller Structure and Performance According to Linearization Methods in the Looper ILQ Control for Hot Strip Finishing Mills (열간사상압연기의 루퍼 ILQ 제어에 있어 선형화 기법에 따른 제어기 구조 및 성능)

  • Park, Cheol-Jae;Hwang, I-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.377-384
    • /
    • 2007
  • This paper studies on the relation between linearization methods and controller gains in the looper ILQ(lnverse Linear Quadratic optimal control) system for hot strip finishing mills. Firstly, two linear models arc respectively derived by a linearization method using Taylor's series expansion and a static state feedback linearization method, respectively, and the linear models are compared with the nonlinear model. Secondly, the looper servo controllers are respectively designed on the basis of two linearization models. Finally, the relation between the performances of two ILQ servo controllers and the linearization methods, and the structures and control gains of two controllers are evaluated by a computer simulation.