• Title/Summary/Keyword: Linear feedback control systems

Search Result 552, Processing Time 0.029 seconds

Input-output linearization of nonlinear systems via dynamic feedback (비선형 시스템의 동적 궤한 입출력 선형화)

  • 김용민;이홍기;전홍태
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.4
    • /
    • pp.40-57
    • /
    • 1998
  • The dynamic feedback is well-known to be much more powerful tool compensating the ononlinearity in nonlinear control system than the static one. In this paepr we consider the input-output linearization problem via a regular dynamic feedback which is to make linear the input-dependent part of the output sufficient conditions for the existence of such a regular dynamic feedback control law, after defining the structure algorithm for a dynamic feedback.

  • PDF

Observer Based Output Feedback Control for Time-Delay Systems (시간지연 시스템의 관측기 기반의 출력 피드백 제어)

  • Lee, Sung-Ryul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.3
    • /
    • pp.48-52
    • /
    • 2011
  • This paper presents the observer based output feedback control design for linear systems which have both input and output time delay. Sufficient conditions for existence of stabilizing output feedback controller are characterized by linear matrix inequalities. Since the condition of the proposed design depends on the value of time delay, it is less conservative than existing delay-independent approaches. Finally, an illustrative example is given in order to show the effectiveness of our design method.

Dynamic Output-Feedback Receding Horizon H$_{\infty}$ Controller Design

  • Jeong, Seung-Cheol;Moon, Jeong-Hye;Park, Poo-Gyeon
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.475-484
    • /
    • 2004
  • In this paper, we present a dynamic output-feedback receding horizon $H_{\infty}$controller for linear discrete-time systems with disturbance. The controller is obtained numerically from the finite horizon output-feedback $H_{\infty}$optimization problem, which is, in fact, hardly solved analytically. Under a matrix inequality condition on the terminal weighting matrix, the monotonic decreasing property of the cost is shown. This property guarantees both the closed-loop stability and the $H_{\infty}$norm bound. Then, we extend the proposed design method to a reference tracking problem and a problem for time-varying systems. Numerical examples are given to illustrate the performance of the proposed controller.

A Robust Pole Placement for Uncertain Linear Systems via Linear Matrix Inequalities (선형행렬부등식에 의한 불확실한 선형시스템의 견실한 극점배치)

  • 류석환
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.476-479
    • /
    • 2000
  • This paper deals with a robust pole placement method for uncertain linear systems. For all admissible uncertain parameters, a static output feedback controller is designed such that all the poles of the closed loop system are located within the prespecfied disk. It is shown that the existence of a positive definite matrix belonging to a convex set such that its inverse belongs to another convex set guarantees the existence of the output feedback gain matrix for our control problem. By a sequence of convex optimization the aforementioned matrix is obtained. A numerical example is solved in order to illustrate efficacy of our design method.

  • PDF

A study on the performance improvement of hydraulic position control system using series-feedback compensator (직렬 피이드백 보상기를 이용한 위치제어 유압시스템의 성능향상에 관한 연구)

  • 이교일;이종극
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.332-337
    • /
    • 1988
  • A digital series-feedback compensator algorithm for tracking time-varying signal is presented. The series-feedback compensator is composed of one closed loop pole / zero cancellation compensator and one desired-input generator. This algorithm is applied to nonlinear hydraulic position control system. The hydraulic servo system is modelled as a second order linear model and cancellation compensator is modelled from it. The desired input generator is inserted to reduce modelling error. Digital computer simulation output using this control method is present and the usefulness of this control algorithm for nonlinear hydraulic system is verified.

  • PDF

Output Feedback Stabilization of Non-Minimum phase Nonlinear Systems (비최소위상 비선형 시스템의 출력궤환 안정화)

  • 조남훈
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.977-983
    • /
    • 2003
  • An output feedback stabilizing controller far non-minimum phase nonlinear systems is presented. We first perform the standard input-output linearization of the system and then transform the zero dynamics into a special normal form in which the antistable part is not affected by the stable part and the antistable part is given in approximately linear form. Under the assumption that the nonlinear system satisfies the observability rank condition, we can design an observer f3r the extended system that is made of the augmentation of a chain of integrators. The proposed output feedback stabilizing controller can then be designed by combining the observer and the state feedback controller.

LPD(Linear Parameter Dependent) System Modeling and Control of Mobile Soccer Robot

  • Kang, Jin-Shik;Rhim, Chul-Woo
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.243-251
    • /
    • 2003
  • In this paper, a new model for mobile soccer robot, a type of linear system, is presented. A controller, consisting of two loops the one of which is the inner state feedback loop designed for stability and plant be well conditioned and the outer loop is a well-known PI controller designed for tracking the reference input, is suggested. Because the plant, the soccer robot, is parameter dependent, it requires the controller to be insensitive to the parameter variation. To achieve this objective, the pole-sensitivity as a pole-variation with respect to the parameter variation is defined and design algorithms for state-feedback controllers are suggested, consisting of two matrices one of which is for general pole-placement and other for parameter insensitive. This paper shows that the PI controller is equivalent to the state feedback and the cost function for reference tracking is equivalent to the LQ cost. By using these properties, we suggest a tuning procedure for the PI controller. We that the control algorithm in this paper, based on the linear system theory, is well work by simulation, and the LPD system modeling and control are more easy treatment for soccer robot.

A Linear Sliding Surface Design Method for a Class of Uncertain Systems with Mismatched Uncertainties (불확실성이 매칭조건을 만족시키지 않는 선형 시스템을 위한 슬라이딩 평면 설계 방법)

  • 최한호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.861-867
    • /
    • 2003
  • We propose a sliding surface design method for linear systems with mismatched uncertainties in the state space model. In terms of LMIs, we derive a necessary and sufficient condition for the existence of a linear sliding surface such that the reduced-order equivalent sliding mode dynamics restricted to the linear sliding surface is not only stable but completely invariant to mismatched uncertainties. We give an explicit formula of all such linear switching surfaces in terms of solution matrices to the LMI existence condition. We also give a switching feedback control law, together with a design algorithm. Additionally, we give some hints for designing linear switching surfaces guaranteeing pole clustering constraints or linear quadratic performance bound constraints. Finally, we give a design example in order to show the effectiveness of the proposed methodology.

Extension and Simplification of Inverse LQ Regulator of Large Scale Systems by Decentralized Control

  • Kubo, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.26-30
    • /
    • 2005
  • An LMI based method to construct a decentralized control law for large scale systems is discussed. It is extended to assure the stability not only of the overall system but also of each subsystem without interconnection. Then, it is simplified to have local feedback loops only for some selected subsystems.

  • PDF

$H_{\infty}$ Fuzzy State-Feedback Control Design for Uncertain Nonlinear Descriptor Systems;An LMI Approach

  • Assawinchaichote, W.;Nguang, S.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1037-1041
    • /
    • 2004
  • This paper examines the problem of designing an $H_{\infty}$ fuzzy state-feedback controller for a class of uncertain nonlinear descriptor systems which is described by a Takagi-Sugeno (TS) fuzzy model. Based on a linear matrix inequality (LMI) approach, we develop an $H_{\infty}$ state-feedback controller which guarantees the $L_2$-gain of the mapping from the exogenous input noise to the regulated output to be less than some prescribed value for this class of systems. A numerical example is provided to illustrate the design developed in this paper.

  • PDF