• Title/Summary/Keyword: Linear coupling

Search Result 406, Processing Time 0.038 seconds

Disital Control for Active Magnetic Bearing System (능동자기베어링시스템의 디지털 제어)

  • 박영진;김승철;정성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.311-316
    • /
    • 1994
  • In this study, a governing equation for 4-axis active magnetic bearing system composed of a rigid rotor and two radial magnetic bearings is derived. We find out that there are two kind of coupling between control axes in the system. And digital contralized controller is designed based on state-space approach and linear quadratic regulator(LQR) theory. By numerical simulation, it is shown what the designed controller can stabilize the system and control the coupling effectively using limited control input.

  • PDF

Time-Domain Electromagnetic Coupling in Induced Polarization Surveys on a Uniform Earth (균질대지에 대한 시간영역 유도분극법에 전자기결합)

  • Kim, Hee Joon
    • Economic and Environmental Geology
    • /
    • v.19 no.3
    • /
    • pp.193-197
    • /
    • 1986
  • A simple and fast solution is derived to evaluate the effects of time-domain electromagnetic coupling in induced polarization surveys on a uniform earth. The simplified solution gives an explicit statement of the dependence of time-domain electromagnetic coupling on the model parameters, and yields sufficiently accurate results for most situations encountered in practice. The co-linear dipole-dipole and Wenner arrays are used as examples in this paper, but th numerical solution can be applied to any electrode configuration.

  • PDF

Optimization of Ultrathin Backlight Unit by Using a Tapered Light Guide Film Studied by Optical Simulation

  • Joo, Byung-Yun;Ko, Jae-Hyeon
    • Current Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.101-106
    • /
    • 2017
  • Optical structures of a tapered ultra-thin light guide film (LGF) were optimized by optical simulation for increasing coupling efficiency between light sources and the LGF. A serration pattern on the entrance side surface could provide a comparable coupling efficiency to that of the conventional LGF where a linear, asymmetric prism array was formed on the taper surface. Several micro-patterns were applied to the top and/or bottom surface of the LGF for achieving better luminance property, and it was found that an optimized micro-pyramid pattern exhibited the highest average luminance together with satisfactory luminance uniformity.

Characteristics of the Multi-Hydrogen Bonded Systems: DFT Description on the Solvated Electrons

  • Xu, Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3265-3268
    • /
    • 2013
  • The multi-hydrogen bonded systems with the solvated electrons are investigated at the B3LYP/6-311++$G^{**}$ basis set level. The symmetrical linear geometrical characteristic is common for the dimer systems, while for the tetramer system, the tetrahedron configuration is generated. The NBO charge analyses demonstrate that the multi-hydrogen-multi-electron (mH-ne) coupling exist in these anion systems, as is supported by the electrostatic potential and the molecular orbital analyses. The positive chemical shift value of the central hydrogen ($H_c$) and the negative chemical shift value of the terminal hydrogen ($H_t$) indicate that the $H_c$ is electronegative while the $H_t$ is electropositive, respectively. Strong coupling between two central hydrogen atoms is demonstrated by the large spin-spin coupling constants. The solvated electron donates significant contributions for the stability of these systems.

NUMERICAL COUPLING OF TWO SCALAR CONSERVATION LAWS BY A RKDG METHOD

  • OKHOVATI, NASRIN;IZADI, MOHAMMAD
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.3
    • /
    • pp.211-236
    • /
    • 2019
  • This paper is devoted to the study and investigation of the Runge-Kutta discontinuous Galerkin method for a system of differential equations consisting of two hyperbolic conservation laws. The numerical coupling flux which is used at a given interface (x = 0) is the upwind flux. Moreover, in the linear case, we derive optimal convergence rates in the $L_2$-norm, showing an error estimate of order ${\mathcal{O}}(h^{k+1})$ in domains where the exact solution is smooth; here h is the mesh width and k is the degree of the (orthogonal Legendre) polynomial functions spanning the finite element subspace. The underlying temporal discretization scheme in time is the third-order total variation diminishing Runge-Kutta scheme. We justify the advantages of the Runge-Kutta discontinuous Galerkin method in a series of numerical examples.

Design and Dynamic Characteristics analysis of Moving Magnet Linear Actuator Considering the Magnetic Nonlinear phenomena (자기적 비선형을 고려한 Moving Magnet Linear Actuator의 설계 및 동특성 해석)

  • Hwang Kyu-Hwan;Kim Chul-Han;Jeon Kyeo-Lock;Cho Yun-Hyun
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.259-262
    • /
    • 2003
  • This paper is proposed a new linear actuator with the permanent magnet on the mover. This linear actuator is designed to produce the vibration of a osillator. In order to evaluate its dynamic performance, the equivalent coupling parameter between mechanical and electromagnetic equations of the linear actustor, which is considered the magnetic nonlinear phenomena, is analyzed by the finite element method and estimated the thrust, displacement and acceleration with the simualation values and the experimenta ones.

  • PDF

Nonlinear Optimal Control of an Input-Constrained and Enclosed Thermal Processing System

  • Gwak, Kwan-Woong;Masada, Glenn Y.
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.160-170
    • /
    • 2008
  • Temperature control of an enclosed thermal system which has many applications including Rapid Thermal Processing (RTP) of semiconductor wafers showed an input-constraint violation for nonlinear controllers due to inherent strong coupling between the elements [1]. In this paper, a constrained nonlinear optimal control design is developed, which accommodates input constraints using the linear algebraic equivalence of the nonlinear controllers, for the temperature control of an enclosed thermal process. First, it will be shown that design of nonlinear controllers is equivalent to solving a set of linear algebraic equations-the linear algebraic equivalence of nonlinear controllers (LAENC). Then an input-constrained nonlinear optimal controller is designed based on that LAENC using the constrained linear least squares method. Through numerical simulations, it is demonstrated that the proposed controller achieves the equivalent performances to the classical nonlinear controllers with less total energy consumption. Moreover, it generates the practical control solution, in other words, control solutions do not violate the input-constraints.

On the Error Bound of the Approximate Solution of a Nonclassically Damped Linear System under Periodic Excitations

  • Hwang, Jai-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4E
    • /
    • pp.45-52
    • /
    • 1996
  • One common procedure in the approximate solution of a nonclassically damped linear system is to neglect the off-diagonal elements of the normalized damping matrix. A tight error bound, which can be computed with relative ease, is given for this method of solution. The role that modal coupling plays in the control of error is clarified. If the normalized damping matrix is strongly diagonally dominant, it is shown that adequate frequency separation is not necessary to ensure small errors.

  • PDF

Analysis of Neutral Harmonic Currents according to Non-linear Loads in Distribution Lines (배전선로에서의 비선형부하에 따른 중성선 고조파 분석)

  • Wang, Tae-Hee;Kim, Hyoun-Su;Rhee, Sang-Bong;Kim, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.183-184
    • /
    • 2008
  • In this paper, the THD(Total Harmonic Distortion) in distribution systems according to the ratio of non-linear loads was calculated and analyzed. The PCC(Point of Common Coupling) is selected to analyze THD of a 3-phase current and a neutral current.

  • PDF

Synchronization of Chaos in a Dual-structured System Consisting of Two Identical Piecewise-linear Systems

  • Kita, Toshihiro
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.2012-2015
    • /
    • 2002
  • Synchronization phenomena of chaos observed in a dual-structured system is presented. The system is consisting of two identical piecewise-linear systems and the simple coupling between the two systems enables the synchronization of the chaotic behavior. An application of the proposed dual-structure to a real power system for the parameter value identification is also presented.

  • PDF