• Title/Summary/Keyword: Linear assignment method

Search Result 94, Processing Time 0.026 seconds

The Min-Distance Max-Quantity Assignment Algorithm for Random Type Quadratic Assignment Problem (랜덤형 2차원 할당문제의 최소 거리-최대 물동량 배정 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.201-207
    • /
    • 2018
  • There is no known polynomial time algorithm for random-type quadratic assignment problem(RQAP) that is a NP-complete problem. Therefore the heuristic or meta-heuristic approach are solve the approximated solution for the RQAP within polynomial time. This paper suggests polynomial time algorithm for random type quadratic assignment problem (QAP) with time complexity of $O(n^2)$. The proposed algorithm applies one-to-one matching strategy between ascending order of sum of distance for each location and descending order of sum of quantity for each facility. Then, swap the facilities for reflect the correlation of distances of locations and quantities of facilities. For the experimental data, this algorithm, in spite of $O(n^2)$ polynomial time algorithm, can be improve the solution than genetic algorithm a kind of metaheuristic method.

A method for deciding weighting matrices in a linear discrete time optimal regulator problems to locate all poles in the specified region

  • Shin, Jae-Woong;Shimemura, Etsujiro;Kawasaki, Naoya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.729-733
    • /
    • 1988
  • In this paper, a new procedure for selecting weighting matrices in linear discrete time quadratic optimal control problems (LQ-problem) is proposed. In LQ problems, the quadratic weighting matrices are usually decided on trial and error in order to get a good response. But using the proposed method, the quadratic weights are decided in such a way that all poles of the closed loop system are located in a desired area for good responses as well as for stability and values of the quadratic cost functional are kept less then a specified value. The closed loop systems constructed by this method have merits of LQ problems as well as those of pole assignment problems. Taking into consideration that little is known about the relationship among the quadratic weights, the poles and the values of cost functional, this procedure is also interesting from the theoretical point of view.

  • PDF

Multi Agents-Multi Tasks Assignment Problem using Hybrid Cross-Entropy Algorithm (혼합 교차-엔트로피 알고리즘을 활용한 다수 에이전트-다수 작업 할당 문제)

  • Kim, Gwang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.4
    • /
    • pp.37-45
    • /
    • 2022
  • In this paper, a multi agent-multi task assignment problem, which is a representative problem of combinatorial optimization, is presented. The objective of the problem is to determine the coordinated agent-task assignment that maximizes the sum of the achievement rates of each task. The achievement rate is represented as a concave down increasing function according to the number of agents assigned to the task. The problem is expressed as an NP-hard problem with a non-linear objective function. In this paper, to solve the assignment problem, we propose a hybrid cross-entropy algorithm as an effective and efficient solution methodology. In fact, the general cross-entropy algorithm might have drawbacks (e.g., slow update of parameters and premature convergence) according to problem situations. Compared to the general cross-entropy algorithm, the proposed method is designed to be less likely to have the two drawbacks. We show that the performances of the proposed methods are better than those of the general cross-entropy algorithm through numerical experiments.

Robust Pole Assignment in a Specified Disk

  • Nguyen, Van-Giap;Nguyen, Tan-Tien;Lee, Gun-You;Kim, Sang-Bong
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.116-120
    • /
    • 2000
  • This paper presents a method to assign robustly the closed loop system's poles in a specified disk by a state feedback for a linear time invariant system with structured or unstructured uncertainties. THe proposed robust design procedure includes two steps. Firstly, the perturbed closed loop matrix $A_{cl p}$ = $A_{cl}$ + Δ$A_{cl}$ is rearranged such that it is a function of the nominal closed loop matrix $A_{cl}$. Hence, we can control the positions of the perturbed closed loop poles by choosing $A_{cl}$ appropriately. Secondly, the feedback control law F that assigns the closed loop poles of the perturbed system in a specified disk is determined from the equation $A_{cl}$ = A + BF. A procedure for finding F is proposed based on partitioning every matrix of the equation $A_{cl}$ = A + BF in the horizontal direction.

  • PDF

Robust Fault Detection Based on Aero Engine LPV Model

  • Linfeng, Gou;Xin, Wang;Liang, Chen
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.35-38
    • /
    • 2008
  • This paper develops an aero engine LPV mathematical model to exactly describe aero engine dynamic process characteristics, eliminate the effect of modeling error. Design FDF with eigenstructure assignment. The simulation results of turbofan engine control system sensor fault show that this method has good performance in focusing discrimination in fault signal with modeling eror, enhancing the robustness to unknown input, detecting accuracy is high and satisfiying real-time requirement.

  • PDF

Autopilot Design for Agile Missile with Aerodynamic Fin and Side Thruster

  • Choi, Yong-Seok;Lee, Ho-Chul;Choi, Jae-Weon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.508-513
    • /
    • 2003
  • This paper is concerned with a mixed control with aerodynamic fin and side thrusters applied to an agile missile using two-time scale dynamic inversion and linear time-varying control technique. The nonlinear dynamic inversion method with the weighting function allocates the desired control inputs (aerodynamic fin and side thrusters) to track a reference trajectory, and the time-varying control technique guarantees the robustness for the uncertainties. Closed-loop stability is achieved by the assignment of the extended-mean of these linear time-varying eigenvalues to the left half complex plane. The proposed schemes are validated by nonlinear simulations.

  • PDF

Design of control systems by a linear fractional transformation (선형분수변환을 이용한 제어계설계)

  • ;古田 勝久
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.78-88
    • /
    • 1989
  • The fundamental objective of this paper has been to develop a means for incoporating the concept of the linear fractional transformation more generally and easily into multivariable feedback design procedure. When we design a continuous system, generally, we are constrained by design methods which arise specifically for the system. Also, in the design of descrete systems, it is the same concept. But the approach developed in this paper is very flexible in the view that in spite of being the continuous or discrete, the design can be done using a well known design method in both cases. That is, when we design a contnuous system or discrete system, the design can be done by a standard design method of continuous systmes or discrete ones, depending on the choice of the linear fractional transformation. Therefore, it is noted that this concept has broken the unflexibility of the conventional design rules for multivariable control system. In essence, the concept shows that if a given system is controllable, some desirable design, for examples, pole assignment within prespecified region, optimal controllers with poles within prespecified region etc., could be done easily by transforming a desirable region into a standard region, such as the complex left-half plane or the unit disk, by the chosen linear fractional transformation, and then by designing the transformed system using the well known standard results.

  • PDF

THE t-WISE INTERSECTION OF RELATIVE THREE-WEIGHT CODES

  • Li, Xin;Liu, Zihui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1095-1110
    • /
    • 2017
  • The t-wise intersection is a useful property of a linear code due to its many applications. Recently, the second author determined the t-wise intersection of a relative two-weight code. By using this result and generalizing the finite projective geometry method, we will present the t-wise intersection of a relative three-weight code and its applications in this paper.

An Optimal ILP Scheduling Algorithm on Linear Data-Flow Graph for Multiprocessor Design (멀티프로세서 설계를 위한 Linear Data-Row Graph의 최적화 ILP 알고리즘)

  • Kim Ki-Bog;Lin Chi-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.6 s.336
    • /
    • pp.49-58
    • /
    • 2005
  • In this paper, we propose an optimal ILP scheduling algorithm for multiprocessor design on LDFG(Linear Data-Flow Graph) that can be represented by homogeneous synchronous data-flow. The proposed computation in this paper does not contain data-dependent, all scheduling decisions for such algorithms can be taken at compile time, only fully static overlapped schedules are considered. It means that all linear have the same schedule and the same processor assignment. In this paper, the resource-constrained problem is addressed, for the LDFG optimization for multiprocessor design problem formulating ILP solution available to provide optimal solution. The results show that the scheduling method is able to find good quality schedules in reasonable time.

A Design Method Reducing the Effect of Zeros of a Cascaded Three-Parameters Controller: The Characteristic Ratio Assignment Approach (종속형제어기의 영점의 영향을 고려한 저차제어기의 설계: 특성비지정 접근법)

  • Hua, Jin Li;Lee, Kwan-Ho;Kim, Young-Chol
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.158-160
    • /
    • 2005
  • This paper presents a new approach to the problem of designing a cascaded three-parameters controller for a given linear time invariant (LTD plant in unity feedback system. We consider a proportional-integral-derivative (PID) and a first-order controller with specified overshoot and settling time. This problem is difficult to solve because there may be no analytical solution due to the use of low-order controller and furthermore. the zeros of controller just appear in the zeros of feedback system. The key idea of our method is to impose a constraint on the controller parameters so that the zeros of resulting controller are distant from the dominant pole of closed-loop system to the left as far as the given interval. Two methods realizing the idea are suggested. We have employed the characteristic ratio assignment (CRA) in order to deal with the time response specifications. It is noted that the proposed methods are accomplished only in parameter space. Several illustrative examples are given.

  • PDF