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THE t-WISE INTERSECTION OF RELATIVE

THREE-WEIGHT CODES

Xin Li and Zihui Liu

Abstract. The t-wise intersection is a useful property of a linear code
due to its many applications. Recently, the second author determined
the t-wise intersection of a relative two-weight code. By using this result
and generalizing the finite projective geometry method, we will present
the t-wise intersection of a relative three-weight code and its applications
in this paper.

1. Introduction

The t-wise intersection of a linear code was introduced by Cohen et al. [3]
[6] in order to study separating codes and independent families. A 2-wise
intersecting code is usually called intersecting, which satisfies the property
that any two nonzero codewords have intersecting support [7]. The support
χ(c) of a codeword c is defined as the set of the nonzero coordinate positions
of the codeword. The t-wise intersecting codes have many applications such as
multiple access [4] and cryptography [10].

The t-wise intersecting code is also closely related to the separating code
which has been used in the areas such as automatic synthesis, technical diag-
nosis and digital fingerprinting [5]. A binary intersecting code is equivalent to
a (2,1)-separating code, whereas the 3-wise binary intersecting code is equiva-
lent to the (2,2)-separating code, and in nonbinary case, the 3-wise intersecting
property is the necessary condition of (2,2)-separation [3]. In addition, it is
well known that all the nonzero codewords of a binary intersecting code are
minimal [1], and the set of minimal codewords of a linear code is the key to
the secret sharing scheme based on the dual of the linear code.

The t-wise intersections of a constant-weight code and a relative two-weight
code have been addressed in [8] by using the finite projective geometry method
[2]. A relative three-weight code was recently introduced by the second author
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and Wu [9], and it can be applied to the secret sharing scheme based on a linear
code and the wiretap channel II with the coset coding scheme. A relative three-
weight code is a large family of codes, including a relative two-weight code and
a constant-weight code as special cases. The aim of this paper is to compute
the t-wise intersection of a relative three-weight code.

Definition 1.1. Let C be an [n, k] linear code, that is, a code with length n

and dimension k. The t-wise intersection of C is defined as the number

min{|

i=t
⋂

i=1

χ(ci)| : c1, c2, . . . , ct are any t linearly independent codewords}.

C is called t-wise intersecting if its t-wise intersection is nonzero.

Definition 1.2 ([9]). Let C1 be a k1-dimensional subcode of C, and C2 be a
k2-dimensional subcode, satisfying C1 ⊂ C2 ⊂ C. Then C is called a relative
three-weight code with respect to C1 and C2, provided that C1 \ {0}, C2 \ C1
and C \ C2 are all constant-weight codes. If these three constant-weight codes
have weights ω1, ω2 and ω3, respectively, then the relative three-weight code C
is denoted by C(ω1, ω2, ω3).

The notations C, C1 and C2 preserve the same meaning as in Definition 1.2
throughout the paper unless otherwise stated.

Definition 1.3. D ⊂ C is called a relative (r, r1, r2) subcode with r1 ≤ r2 ≤ r

if D satisfies dimD = r, dimD ∩ C1 = r1, and dimD ∩ C2 = r2.

Additionally, let 〈c1, . . . , ct〉 be the subcode of C generated by c1, . . . , ct.
Define tmax

1 and tmax
2 as follows.

tmax
1 := max{dim(〈c1, . . . , ct〉 ∩ C1) : c1, . . . , ct are any t linearly independent

codewords in C}.

tmax
2 := max{dim(〈c1, . . . , ct〉 ∩ C2) : c1, . . . , ct are any t linearly independent

codewords in C}.

Assume G to be a generator matrix of a k-dimensional q-ary linear code. The
finite geometry method is to view the columns of G as points of the (k − 1)-
dimensional projective space PG(k − 1, q). Such a viewpoint induces a map
m(·) from PG(k − 1, q) to the set of nonnegative integers:

m : PG(k − 1, q) → N

where N = {0, 1, 2, . . .}, and for any p ∈ PG(k − 1, q), m(p) is the number
of occurrences of p as a column of G. m(p) is called the value of p and the
map m(·) is called a value assignment (or value function) [2]. This map can be
extended to any subset S ⊂ PG(k − 1, q) by defining

m(S) =
∑

p∈S

m(p).
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Obviously, a value assignment and a code can be determined each other (up to
code equivalence).

For an [n, k] relative three-weight code C(ω1, ω2, ω3) in this paper, we fix a
generator matrix G with the first k1 and k2 rows generating the subcodes C1
and C2 ⊃ C1, respectively. Assume G determines the value assignment m(·).
In addition, let L ⊂ {1, 2, . . . , k} and p = (t1, t2, . . . , tk) ∈ PG(k − 1, q), then
define PL(p) := (v1, v2, . . . , vk) where vi = ti if i ∈ L, otherwise, vi = 0. Using
the above notations, the geometric structure of relative three-weight codes may
be given as follows.

Lemma 1.1 ([9]). Let C(ω1, ω2, ω3) be a relative three-weight code with respect

to a k1-dimensional subcode C1 and a k2-dimensional subcode C2, and let G and

m(·) be defined as the above. Then m(·) satisfies

(1) m(p) =















ω1

qk−1 , p ∈ S1,

qk1ω2−(qk1−1)ω1

qk−1 , p ∈ S2,

qk2ω3−(qk1−1)ω1−(qk2−qk1 )ω2

qk−1 , p ∈ S3,

where Si ⊂ PG(k − 1, q) for 1 ≤ i ≤ 3 and S1 = {p : PL1(p) 6= 0}, S2 =
{p : PL1(p) = 0 and PL2(p) 6= 0}, S3 = {p : PL1(p) = 0 and PL2(p) = 0}, and
L1 = {1, 2, . . . , k1}, and L2 = {k1 + 1, . . . , k2}.

2. Some preliminary lemmas

Note that if ω1 = ω2 in Definition 1.2, then C(ω1, ω2, ω3) reduces to a relative
two-weight code with respect to C2 [8], and if ω2 = ω3, then C is a relative two-
weight code with respect to C1, and if ω1 = ω2 = ω3, then C becomes a constant-
weight code. Thus, a relative three-weight code is a generalization of both a
relative two-weight one and a constant-weight one. The t-wise intersection of
relative three-weight codes can be determined by borrowing the idea of that of
a relative two-weight one and a constant-weight one.

Lemma 2.1 ([8]). The t-wise intersection of a linear constant-weight code with

weight ω is equal to ( q−1
q

)t−1ω.

Lemma 2.2 ([8]). The t-wise (1 ≤ t ≤ k) intersection of a relative two-weight

code C(ω1, ω2) with respect to a subcode C1 (with weight ω1) is equal to










( q−1
q

)t−1ω1, ω1 < ω2,

( q−1
q

)t−1ω1 − ( q−1
q

)t−tmax
−1(ω1 − ω2), tmax < t and ω1 > ω2,

( q−1
q

)t−1ω1 − (ω1 − ω2), tmax = t and ω1 > ω2,

where

tmax = max{dim(〈c1, . . . , ct〉 ∩ C1) : c1, . . . , ct are any t linearly independent

codewords in C}.



1098 X. LI AND Z. LIU

For a relative three-weight code C(ω1, ω2, ω3), any t linearly independent
codewords c1, . . . , ct can be written as the following matrix operation by using
the generating matrix G of C(ω1, ω2, ω3).







c1
...
ct






= Xt×kG = (Xt×k1 , Xt×(k−k1))

(

Gk1×n

G(k−k1)×n

)

= (Xt×k2 , Xt×(k−k2))

(

Gk2×n

G(k−k2)×n

)

.

Note that rank(Xt×k) = t, and that the block matrices Gk1×n and Gk2×n(k1 <

k2) are generator matrices of C1 and C2, respectively.

Lemma 2.3. If D = 〈c1, . . . , ct〉 is a relative (t, t1, t2) subcode of a relative

three-weight code C, then

rank(Xt×(k−k1)) = t− t1; rank(Xt×(k−k2)) = t− t2.

Proof. Since 〈c1, . . . , ct〉 is a relative (t, t1, t2) subcode, there is an invertible
matrix Yt×t such that

Yt×tXt×k =
(

Yt×tXt×k1 , Yt×tXt×(k−k1)

)

=
(

Yt×tXt×k2 , Yt×tXt×(k−k2)

)

=

(

X ′

t1×k1
0t1×(k−k1)

X ′

(t−t1)×k1
X ′

(t−t1)×(k−k1)

)

=





X ′

t1×k1
0t1×(k2−k1) 0t1×(k−k2)

X ′′

(t2−t1)×k1
X ′′

(t2−t1)×(k2−k1)
0(t2−t1)×(k−k2)

X ′′

(t−t2)×k1
X ′′

(t−t2)×(k2−k1)
X ′′

(t−t2)×(k−k2)



 ,

with

rank(X ′

t1×k1
) = t1, rank(X

′

(t−t1)×(k−k1)
) = t− t1 and

rank(X ′′

(t−t2)×(k−k2)
) = t− t2.

Therefore, rank(Xt×(k−k1)) = rank(Yt×tXt×(k−k1)) = rank(X ′

(t−t1)×(k−k1)
) =

t − t1 and rank(Xt×(k−k2)) = rank(Yt×tXt×(k−k2)) = rank(X ′′

(t−t2)×(k−k2)
) =

t− t2. �

3. The main result

The t-wise intersection of a relative three-weight C(ω1, ω2, ω3) is closely re-
lated to the size of ω1, ω2 and ω3. By comparing the size of ω1, ω2 and ω3,
we may divide the analysis into six cases. In this section, we will determine
the t-wise intersection of a binary relative three-weight code for all these six
cases, and then we will state in a later remark how to determine the t-wise
intersection of any q-ary (q > 2) relative three-weight code for the first four
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cases, and state the difficulties to determine the t-wise intersection of any q-ary
relative three-weight code for the last two cases.

Let the notations be the same as in Lemma 1.1 and let m1 := m(p1), m2 :=
m(p2) and m3 := m(p3) for p1 ∈ S1, p2 ∈ S2 and p3 ∈ S3. Then, it follows
from (1) that

ω1 = m1q
k−1;

ω1 − ω2 = qk−k1−1(m1 −m2);

ω2 − ω3 = qk−k2−1(m2 −m3).

Theorem 3.1. The t-wise intersection of binary relative three-weight codes

C(ω1, ω2, ω3) is equal to

(i) (12 )
t−1ω1, ω3 > ω2 > ω1.

(ii)



















































(12 )
t−1ω1 − (12 )

t−tmax
2 −1(ω2 − ω3)− (12 )

t−tmax
1 −1(ω1 − ω2),

{

tmax
2 < t

ω1 > ω2 > ω3

(12 )
t−1ω1 − (ω2 − ω3)− (12 )

t−tmax
1 −1(ω1 − ω2),











tmax
2 = t

tmax
1 < t

ω1 > ω2 > ω3

(12 )
t−1ω1 − (ω1 − ω3),

{

tmax
2 = tmax

1 = t

ω1 > ω2 > ω3.

(iii)

{

(12 )
t−1ω1 − (12 )

t−tmax
1 −1(ω1 − ω2), tmax

1 < t and ω1 > ω3 > ω2

(12 )
t−1ω1 − (ω1 − ω2), tmax

1 = t and ω1 > ω3 > ω2.

(iv)

{

(12 )
t−1ω1 − (12 )

t−tmax
1 −1(ω1 − ω2), tmax

1 < t and ω3 > ω1 > ω2

(12 )
t−1ω1 − (ω1 − ω2), tmax

1 = t and ω3 > ω1 > ω2.

(v)











min{(12 )
t−1ω2 − (12 )

t−tmax
2 −1(ω2 − ω3); (

1
2 )

t−1ω1},

{

tmax
2 < t

ω2 > ω3 > ω1

min{(12 )
t−1ω2 − (ω2 − ω3); (

1
2 )

t−1ω1}, tmax
2 = t and ω2 > ω3 > ω1.

(vi)

{

(12 )
t−1ω2 − (12 )

t−tmax
2 −1(ω2 − ω3), tmax

2 < t and ω2 > ω1 > ω3

(12 )
t−1ω2 − (ω2 − ω3), tmax

2 = t and ω2 > ω1 > ω3.

Before giving out the detailed proof of Theorem 3.1, we introduce a key
lemma which will be used in cases (v) and (vi). In these two cases, the fact
that ω2 is greater than both ω1 and ω3 yields m2 > m1 and m2 > m3. Expand
the generator matrix G of C to the following form:

(G,G3) = (G1, G2),

where G1 consists of all points in PG(k − 1, 2) with each point repeating m1

times, and all the points in S2 ∪ S3 constitute the columns of G2 with each
point repeating m2 −m1 times. The columns of G3 consist of all points of S3

and each point repeats m2 − m3 times. Then, G1 generates a k-dimensional
constant-weight code C′ with weight m12

k−1 and length l1 = m1(2
k − 1), and
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G2 generates a (k−k1)-dimensional constant-weight code C′′ with weight (m2−
m1)2

k−k1−1 and length l2 = (m2 − m1)(2
k−k1 − 1), and G3 generates a (k −

k2)-dimensional constant-weight code C′′′ with weight (m2 −m3)2
k−k2−1 and

length l3 = (m2 −m3)(2
k−k2 − 1). Let c1, . . . , ct be any t linearly independent

codewords in C and 〈c1, . . . , ct〉 is a relative (t, t1, t2)(t1 < t2 < t) subcode.

Denote

(

c1

...
ct

)

= Xt×kG, and introduce





c′1

...
c′
t



 = Xt×kG1,





c′′1

...
c′′
t



 = Xt×kG2,





c′′′1

...
c′′′
t



 = Xt×kG3. According to the above statement, for any i ∈ {1, 2, . . . , t},

we have (ci, c
′′′

i ) = (c′i, c
′′

i ) with c′i ∈ C′, c′′i ∈ C′′ and c′′′i ∈ C′′′. Besides,
c′1, . . . , c

′

t are linearly independent codewords, whereas rank(c′′1 , . . . , c
′′

t ) = t− t1
and rank(c′′′1 , . . . , c′′′t ) = t− t2 by Lemma 2.3. For convenience, we will always
denote inter, inter1, inter2 and inter3 as follows.

inter := |

t
⋂

i=1

χ(ci)|; inter1 := |

t
⋂

i=1

χ(c′i)|;

inter2 := |

t
⋂

i=1

χ(c′′i )|; inter3 := |

t
⋂

i=1

χ(c′′′i )|.

Based on Lemma 2.1, we have inter = inter1 + inter2 − inter3 with inter1 =
(12 )

t−1m12
k−1, 0 ≤ inter2 ≤ (12 )

t−t1−1(m2 − m1)2
k−k1−1 and 0 ≤ inter3 ≤

(12 )
t−t2−1(m2 − m3)2

k−k2−1. Preserve the same notations aforementioned.
Then, we have:

Lemma 3.1. Assume q = 2 and ω2 > max{ω1, ω3}, and let D = 〈c1, . . . , ct〉
be a relative (t, t1, t2) (t1 < t2 < t) subcode of C with inter3 6= 0. Then

inter2 = (
1

2
)t−t1−1(m2 −m1)2

k−k1−1.

Proof. Write

(

c1

...
ct

)

= Xt×kG. Then, as in the proof of Lemma 2.3, there exists

an invertible matrix Yt×t such that

Yt×tXt×k =





X ′

t1×k1
0t1×(k2−k1) 0t1×(k−k2)

X ′′

(t2−t1)×k1
X ′′

(t2−t1)×(k2−k1)
0(t2−t1)×(k−k2)

X ′′

(t−t2)×k1
X ′′

(t−t2)×(k2−k1)
X ′′

(t−t2)×(k−k2)



 ,

where

rank(X ′

t1×k1
) = t1, rank(X

′′

(t2−t1)×(k2−k1)
) = t2 − t1 and

rank(X ′′

(t−t2)×(k−k2)
) = t− t2.
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Thus,

Yt×t







c′′1
...
c′′t

c′′′1
...
c′′′t






=



































0
...
0

c̄′′t1+1
...
c̄′′t2

c̄′′t2+1
...
c̄′′t

0
...
0
0
...
0

c̄′′′t2+1
...
c̄′′′t



































,

where rank(c̄′′t1+1, . . . , c̄
′′

t ) = t − t1 and rank(c̄′′′t2+1, . . . , c̄
′′′

t ) = t − t2. Ob-

viously, we have rank





c′′1

...
c′′
t

c′′′1

...
c′′′
t



 = t − t1. Without loss of generality, let

(c′′t1+1, . . . , c
′′

t ) be a maximal linearly independent set of (c′′1 , . . . , c
′′

t ). Then,

the last (t − t1) rows of the matrix





c′′1

...
c′′
t

c′′′1

...
c′′′
t



, that is,





c′′
t1+1

...
c′′
t

c′′′
t1+1

...
c′′′
t



, is

the maximal linearly independent set of its all rows. So, there exists a matrix
( a1×(t1+1) ··· a1×t

...
. . .

...
at1×(t1+1) ··· at1×t

)

such that







c′′1
...
c′′t1

c′′′1
...
c′′′t1






=







a1×(t1+1) · · · a1×t

...
. . .

...
at1×(t1+1) · · · at1×t













c′′t1+1
...
c′′t

c′′′t1+1
...
c′′′t






,

that is,







c′′1
...
c′′t1






=







a1×(t1+1) · · · a1×t

...
. . .

...
at1×(t1+1) · · · at1×t













c′′t1+1
...
c′′t






,(2)







c′′′1
...
c′′′t1






=







a1×(t1+1) · · · a1×t

...
. . .

...
at1×(t1+1) · · · at1×t













c′′′t1+1
...
c′′′t






.(3)

Based on (3) and rank(c′′′1 , . . . , c′′′t ) = t − t2, without loss of generality, we as-
sume (c′′′t2+1, . . . , c

′′′

t ) to be the maximal linearly independent set of (c′′′1 , . . . , c′′′t ).
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Then, there is a matrix





b(t1+1)×(t2+1) ··· b(t1+1)×t

...
. . .

...
bt2×(t2+1) ··· bt2×t



 such that

(4)







c′′′t1+1
...
c′′′t2






=







b(t1+1)×(t2+1) · · · b(t1+1)×t

...
. . .

...
bt2×(t2+1) · · · bt2×t













c′′′t2+1
...
c′′′t






.

Combing (3) and (4), one gets
(5)







c′′′1
...
c′′′t1






=







a1×(t1+1) · · · a1×t

...
. . .

...
at1×(t1+1) · · · at1×t



























b(t1+1)×(t2+1) · · · b(t1+1)×t

...
. . .

...
bt2×(t2+1) · · · bt2×t

1 · · · 0
...

. . .
...

0 · · · 1



























c′′′t2+1
...
c′′′t






.

Since inter3 6= 0, there must be a coordinate position j0 ∈ {1, 2, . . . , l3} such
that j0 ∈ χ(c′′′i ) ∀1 ≤ i ≤ t. According to (4) and (5), we have































































































b(t1+1)×(t2+1) · · · b(t1+1)×t

...
. . .

...

bt2×(t2+1) · · · bt2×t

















1
...

1









=









1
...

1









,









a1×(t1+1) · · · a1×t

...
. . .

...

at1×(t1+1) · · · at1×t

































b(t1+1)×(t2+1) · · · b(t1+1)×t

...
. . .

...

bt2×(t2+1) · · · bt2×t

1 · · · 0
...

. . .
...

0 · · · 1

































1
...

1









=









1
...

1









.

Thus,

(6)







a1×(t1+1) · · · a1×t

...
. . .

...
at1×(t1+1) · · · at1×t













1
...
1






=







1
...
1






.

Furthermore, denote
⋂t

i=t1+1 χ(c
′′

i ) = {j1, j2, . . . , jr} and let

(

1 1 ··· 1
...
...
. . .

...
1 1 ··· 1

)

be

the matrix which consists of the j1th, j2th,. . . ,and jrth columns of matrix
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c′′
t1+1

...
c′′
t



. Then, based on (2) and (6), one gets







a1×(t1+1) · · · a1×t

...
. . .

...
at1×(t1+1) · · · at1×t













1 1 · · · 1
...

...
. . .

...
1 1 · · · 1






=







1 1 · · · 1
...

...
. . .

...
1 1 · · · 1






.

It is obviously that
t
⋂

i=1

χ(c′′i ) =

t
⋂

i=t1+1

χ(c′′i ),

then,

inter2 = |

t
⋂

i=t1+1

χ(c′′i )|.

Since (c′′t1+1, . . . , c
′′

t ) are t − t1 linearly independent codewords of constant-

weight code C′′ with weight (m2 − m1)2
k−k1−1, it follows |

⋂t

i=t1+1 χ(c
′′

i )| =

(12 )
t−t1−1(m2 − m1)2

k−k1−1 by Lemma 2.1. Thus inter2 = (12 )
t−t1−1(m2 −

m1)2
k−k1−1. �

Now we are ready to show Theorem 3.1.

Proof. (Case i) Since ω3 > ω2 > ω1, it can be checked that there holds m3 >

m2 > m1. Then, the generator matrix G of code C can be rewritten

G =
(

G1, G2, G3

)

,

where G1 consists of all points from PG(k − 1, 2) and each point occurs m1

times. All points in S2 ∪ S3 constitute columns of G2 and each point repeats
m2 −m1 times. The block matrix G3 is made up of all points in S3 and the
number of occurrence of each point as columns of G3 is m3−m2. So G1 gener-
ates a k-dimensional constant-weight code C′ with weight m12

k−1 and length
l1 = m1(2

k − 1). G2 generates a (k − k1)-dimensional constant-weight code
C′′ with weight (m2 − m1)2

k−k1−1 and length l2 = (m2 − m1)(2
k−k1 − 1).

G3 generates a (k − k2)-dimensional constant-weight code C′′′ with weight
(m3 − m2)2

k−k2−1 and length l3 = (m3 − m2)(2
k−k2 − 1). Let c1, . . . , ct be

any t linearly independent codewords in C and

(

c1

...
ct

)

= Xt×kG, then intro-

duce





c′1

...
c′
t



 = Xt×kG1,





c′′1

...
c′′
t



 = Xt×kG2 and





c′′′1

...
c′′′
t



 = Xt×kG3. It can be

concluded that each above codeword ci (i = 1, 2, . . . , t) can be divided into
three sectors, that is, ci = (c′i, c

′′

i , c
′′′

i ) with c′i ∈ C′, c′′i ∈ C′′ and c′′′i ∈ C′′′. Ob-
viously, the codewords c′1, . . . , c

′

t are linearly independent. In addition, based
on Lemma 2.3, the rank of codewords c′′1 , . . . , c

′′

t is (t− t1), and the codewords
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c′′′1 , . . . , c′′′t have rank (t− t2). Based on Lemma 2.1, we conclude that inter1 =
(12 )

t−1m12
k−1 and 0 ≤ inter2 ≤ (12 )

t−t1−1(m2 − m1)2
k−k1−1, 0 ≤ inter3 ≤

(12 )
t−t2−1(m3 − m2)2

k−k2−1. Furthermore, inter = inter1 + inter2 + inter3.

Thus, inter = (12 )
t−1m12

k−1 is reachable whenever c′′1 = 0 and c′′′1 = 0. Addi-
tionally, it follows that c′′1 = 0 and c′′′1 = 0 are equivalent to c1 ∈ C1 and c1 ∈ C2
respectively. Since dim (C1) ≥ 1, we can select an arbitrary nonzero codeword
c1 from C1 and expand it to t linearly independent codewords c1, . . . , ct in C.
So, in case ω3 > ω2 > ω1, the t-wise intersection of binary relative three-weight
codes is (12 )

t−1m12
k−1 = (12 )

t−1ω1.
(Case ii) Based on ω1 > ω2 > ω3, we may obtain m1 > m2 > m3. Similar

to the analysis in (Case i), these matrices, G1, G2, G3, are introduced.

G3 = (G,G1, G2),

where the columns of G1 are all points in S2 ∪ S3 and each point appears
m1−m2 times. G2 consists of all points in S3 and each point appears m2−m3

times. All the points in PG(k− 1, 2) constitute the columns of matrix G3 and
the number of occurrence of each point as columns in G3 is m1. Hence, G1

generates a (k − k1)-dimensional constant-weight code C′ with weight (m1 −
m2)2

k−k1−1 and length l1 = (m1 −m2)(2
k−k1 − 1). G2 generates a (k − k2)-

dimensional constant-weight code C′′ with weight (m2−m3)2
k−k2−1 and length

l2 = (m2−m3)(2
k−k2 −1). G3 generates a k-dimensional constant-weight code

C′′′ with weight m12
k−1 and length l3 = m1(2

k − 1). Let ci be an arbitrary
codeword of the t linearly independent codewords c1, . . . , ct in C with the matrix

form

(

c1

...
ct

)

= Xt×kG. Then, we have c′′′i = (ci, c
′

i, c
′′

i ) for any i ∈ {1, 2, . . . , t}

with c′i ∈ C′, c′′i ∈ C′′ and c′′′i ∈ C′′′. Besides, rank(c′′′1 , . . . , c′′′t ) = t, whereas
rank(c′1, . . . , c

′

t) = t − t1 and rank(c′′1 , . . . , c
′′

t ) = t − t2 by Lemma 2.3. Fur-
thermore, inter = inter3 − inter2 − inter1 with inter3 = (12 )

t−1m12
k−1,

0 ≤ inter2 ≤ (12 )
t−t2−1(m2 − m3)2

k−k2−1 and 0 ≤ inter1 ≤ (12 )
t−t1−1(m1 −

m2)2
k−k1−1 by Lemma 2.1.

Next, we state that inter = (12 )
t−1m12

k−1 − (12 )
t−t2−1(m2 −m3)2

k−k2−1 −

(12 )
t−t1−1(m1 − m2)2

k−k1−1 can be reachable when 〈c1, . . . , ct〉 is a relative
(t, t1, t2) subcode and t1 ≤ t2 < t. Let c1, . . . , ct be arbitrary t linearly indepen-
dent codewords and 〈c1, . . . , ct〉 is a relative (t, t1, t2) subcode of C. According
to the proof of Lemma 2.3, there exists an invertible matrix Yt×t such that

Yt×tXt×k =





X ′

t1×k1
0t1×(k2−k1) 0t1×(k−k2)

X ′′

(t2−t1)×k1
X ′′

(t2−t1)×(k2−k1)
0(t2−t1)×(k−k2)

X ′′

(t−t2)×k1
X ′′

(t−t2)×(k2−k1)
X ′′

(t−t2)×(k−k2)



 ,

with

rank(X ′

t1×k1
) = t1, rank(X

′′

(t2−t1)×(k2−k1)
) = t2 − t1 and

rank(X ′′

(t−t2)×(k−k2)
) = t− t2.
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Next, we can find another invertible matrix Zt×t such that

Zt×tYt×tXt×k =







X ′′′

t1×k1
X ′′′

t1×(k2−k1)
X ′′′

t1×(k−k2)

X ′′′

(t2−t1)×k1
X ′′′

(t2−t1)×(k2−k1)
X ′′′

(t2−t1)×(k−k2)

X ′′

(t−t2)×k1
X ′′

(t−t2)×(k2−k1)
X ′′

(t−t2)×(k−k2)






,

with each row of X ′′′

t1×(k−k2)
and X ′′′

(t2−t1)×(k−k2)
is the same as the last row of

X ′′

(t−t2)×(k−k2)
and each row of X ′′′

t1×(k2−k1)
equals to the last row of

X ′′

(t−t2)×(k2−k1)
.

Denote c1, . . . , ct the rows of matrix Zt×tYt×tXt×kG (as the new t linearly inde-
pendent codewords). Then, we can conclude that these t linearly independent
codewords have intersection

inter = inter3 − inter2 − inter1

= (
1

2
)t−1m12

k−1 − (
1

2
)t−t2−1(m2 −m3)2

k−k2−1

− (
1

2
)t−t1−1(m1 −m2)2

k−k1−1

= (
1

2
)t−1ω1 − (

1

2
)t−t2−1(ω2 − ω3)− (

1

2
)t−t1−1(ω1 − ω2).

So, all t linearly independent codewords with property that their generating
subspace is a relative (t, t1, t2)(t1 ≤ t2 < t) subcode have the minimum inter-
section

(
1

2
)t−1ω1 − (

1

2
)t−t2−1(ω2 − ω3)− (

1

2
)t−t1−1(ω1 − ω2).

Thus, for all parameters t1 and t2, we get the t-wise intersection of binary
relative three-weight codes in case ω1 > ω2 > ω3, that is,

min
(t1,t2)

inter =











(12 )
t−1ω1 − (12 )

t−tmax
2 −1(ω2 − ω3)− (12 )

t−tmax
1 −1(ω1 − ω2), tmax

2 < t

(12 )
t−1ω1 − (ω2 − ω3)− (12 )

t−tmax
1 −1(ω1 − ω2), tmax

2 = t and tmax
1 < t

(12 )
t−1ω1 − (ω1 − ω3), tmax

2 = tmax
1 = t.

(Case iii) From ω1 > ω3 > ω2, we deduce m1 > m2 and m3 > m2. For
the generator matrix G of code C, there are three matrices G1, G2, G3 with
following properties.

(G,G1) = (G2, G3),

where the block matrix G1 is made up of all points in S2 ∪ S3 and each point
repeats m1−m2 times. G2 consists of all points in PG(k−1, 2) and each point
appears m1 times. All points in S3 constitute columns of G3 and each point
occurs m3 − m2 times. Thus, G1 generates a (k − k1)-dimensional constant-
weight code C′ with weight (m1−m2)2

k−k1−1 and length l1 = (m1−m2)(2
k−k1−

1). G2 generates a k-dimensional constant-weight code C′′ with weight m12
k−1

and length l2 = m1(2
k−1). G3 generates a (k−k2)-dimensional constant-weight

code C′′′ with weight (m3 − m2)2
k−k2−1 and length l3 = (m3 − m2)(2

k−k2 −
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1). Assume that c1, . . . , ct with the matrix form

(

c1

...
ct

)

= Xt×kG are any

t linearly independent codewords in C. Obviously, for any i ∈ {1, 2, . . . , t},
we have (ci, c

′

i) = (c′′i , c
′′′

i ) where c′i ∈ C′, c′′i ∈ C′′ and c′′′i ∈ C′′′. Additionally,
rank(c′′1 , . . . , c

′′

t ) = t. Based on Lemma 2.3, we have rank(c′1, . . . , c
′

t) = t−t1 and
rank(c′′′1 , . . . , c′′′t ) = t−t2. Furthermore, we have inter = inter2+inter3−inter1
with inter2 = (12 )

t−1m12
k−1, 0 ≤ inter1 ≤ (12 )

t−t1−1(m1 − m2)2
k−k1−1 and

0 ≤ inter3 ≤ (12 )
t−t2−1(m3 −m2)2

k−k2−1 by Lemma 2.1.

Next, we state that both inter3 = 0 and inter1 = (12 )
t−t1−1(m1−m2)2

k−k1−1

are reachable when 〈c1, . . . , ct〉 is a relative (t, t1, t2)(t1 < t2 ≤ t) subcode. For
any t linearly independent codewords c1, . . . , ct with 〈c1, . . . , ct〉 being a rela-
tive (t, t1, t2) subcode, we can always find two invertible matrices Yt×t and Zt×t

such that

Zt×tYt×tXt×k =







X ′′′

t1×k1
X ′′′

t1×(k2−k1)
X ′′′

t1×(k−k2)

X ′′

(t2−t1)×k1
X ′′

(t2−t1)×(k2−k1)
0(t2−t1)×(k−k2)

X ′′

(t−t2)×k1
X ′′

(t−t2)×(k2−k1)
X ′′

(t−t2)×(k−k2)






,

where each row of X ′′′

t1×(k−k2)
equals to the last row of matrix X ′′

(t−t2)×(k−k2)

and each row of X ′′′

t1×(k2−k1)
is same as the last row of X ′′

(t−t2)×(k2−k1)
. Then

taking the rows of matrix Zt×tYt×tXt×kG to be new t linearly independent
codewords and still denoting them by c1, . . . , ct, we can infer that inter3 = 0
and inter1 = (12 )

t−t1−1(m1−m2)2
k−k1−1. Hence, all the t linearly independent

codewords such that their generating subspace are relative (t, t1, t2)(t1 < t2 ≤ t)
subcodes have the minimum intersection

inter = (
1

2
)t−1m12

k−1 − (
1

2
)t−t1−1(m1 −m2)2

k−k1−1

= (
1

2
)t−1ω1 − (

1

2
)t−t1−1(ω1 − ω2).

Therefore, the t-wise intersection of binary relative three-weight codes in
case ω1 > ω3 > ω2 is

min
(t1,t2)

inter =











(12 )
t−1ω1 − (12 )

t−tmax
1 −1(ω1 − ω2), tmax

1 < t

(12 )
t−1ω1 − (ω1 − ω2), tmax

1 = t.

(Case iv) In this case, we can infer that m1 > m2 and m3 > m2. Then,
according to the same analysis procedure in (Case iii), one gets that the min-
imum intersection of all t linearly independent codewords with property that
the subspaces they generate are relative (t, t1, t2)(t1 < t2 ≤ t) subcodes of C is

inter = (
1

2
)t−1ω1 − (

1

2
)t−t1−1(ω1 − ω2).
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Thus, the t-wise intersection of binary relative three-weight codes in case ω3 >

ω1 > ω2 is

min
(t1,t2)

inter =











(12 )
t−1ω1 − (12 )

t−tmax
1 −1(ω1 − ω2), tmax

1 < t

(12 )
t−1ω1 − (ω1 − ω2), tmax

1 = t.

(Case v) According to Lemma 3.1, for any t linearly independent codewords
with property that their generating subspace is relative (t, t1, t2) subcode of C,
if the corresponding inter3 6= 0, we have

inter = inter1 + inter2 − inter3,

with inter1 = (12 )
t−1m12

k−1, inter2 = (12 )
t−t1−1(m2 − m1)2

k−k1−1. Then,

while inter3 = (12 )
t−t2−1(m2−m3)2

k−k2−1 is reachable, inter has its minimum
value.

For any t given codewords with aforementioned properties, there exist two
invertible matrices Yt×t and Zt×t such that

Zt×tYt×tXt×k =







X ′′′

t1×k1
X ′′′

t1×(k2−k1)
X ′′′

t1×(k−k2)

X ′′′

(t2−t1)×k1
X ′′′

(t2−t1)×(k2−k1)
X ′′′

(t2−t1)×(k−k2)

X ′′

(t−t2)×k1
X ′′

(t−t2)×(k2−k1)
X ′′

(t−t2)×(k−k2)






,

with each row of X ′′′

t1×(k−k2)
and X ′′′

(t2−t1)×(k−k2)
being the same as the last row

of X ′′

(t−t2)×(k−k2)
and each row of X ′′′

t1×(k2−k1)
being equal to the last row of

X ′′

(t−t2)×(k2−k1)
.

Let c1, . . . , ct be rows of matrix Zt×tYt×tXt×kG. Then, c1, . . . , ct constitute
new t linearly independent codewords. Then we have inter = (12 )

t−1m12
k−1 +

(12 )
t−t1−1(m2 −m1)2

k−k1−1 − (12 )
t−t2−1(m2 −m3)2

k−k2−1.

Additionally, if inter3 = 0, we have that

inter = inter1 + inter2 − inter3,

with inter1 = (12 )
t−1m12

k−1 and inter3 = 0. Thus, the minimum value of

inter is (12 )
t−1m12

k−1 when inter2 = 0. Next, we state that inter2 = 0 can
be reached. Since dim(C1) ≥ 1, we choose a nonzero codeword c1 in C1 and
expand it to t linearly independent codewords c1, . . . , ct. It can be checked
that inter2 = inter3 = 0. Thus, if inter3 = 0, the minimum intersection of t
linearly independent codewords is inter = (12 )

t−1m12
k−1.

Summarizing the above discussion, we have that all t linearly independent
codewords (c1, . . . , ct) with 〈c1, . . . , ct〉 being a (t, t1, t2) (t1 ≤ t2 < t) subcodes
of C have the minimum intersection

inter=min{ (
1

2
)t−1m12

k−1 + (
1

2
)t−t1−1(m2 −m1)2

k−k1−1

− (
1

2
)t−t2−1(m2 −m3)2

k−k2−1; (
1

2
)t−1m12

k−1}
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=min{ (
1

2
)t−1ω1 + (

1

2
)t−t1−1(ω2 − ω1)− (

1

2
)t−t2−1(ω2 − ω3); (

1

2
)t−1ω1}.

Hence, the t-wise intersection of binary relative three-weight codes in case ω2 >

ω3 > ω1 is

min
(t1,t2)

inter =

{

min{(12 )
t−1ω2 − (12 )

t−tmax
2 −1(ω2 − ω3); (

1
2 )

t−1ω1}, tmax
2 < t

min{(12 )
t−1ω2 − (ω2 − ω3); (

1
2 )

t−1ω1}, tmax
2 = t.

(Case vi) Similarly to the proof of (Case v), we can obtain the result in (vi)
(the detailed proof is omitted). �

Remark 3.1. In fact, by generalizing the proof of Theorem 3.1 slightly, we may
obtain the t-wise intersection of any q-ary (q > 2) relative three-weight code for
the first four cases. For the last two cases, however, the generalization to q-ary
(q > 2) codes is more difficult. The reason, as we have observed in the proof
of Lemma 3.1, is that the element at the common support coordinate position
of the codewords for q = 2 is explicit, that is, the unique nonzero element “1”
in GF (2), whereas for q > 2, this is not the case. Thus, for q > 2, we are not
able to obtain a similar result as in Lemma 3.1 which can be used to prove the
last two cases in Theorem 3.1.

4. Another application of the t-wise intersection

The t-wise intersection of a linear code is the minimal size of the support in-
tersection of all the t linearly independent codewords. Our method to compute
the t-wise intersection of relative three-weight codes is to use the geometric
structure of relative three-weight codes given in (1). Note that the method
is not only to obtain the t-wise intersection of relative three-weight codes but
also to be able to determine the coordinate positions corresponding to the
t-wise intersection positions, and thus we may locate the columns of the gener-
ator matrix G corresponding to the t-wise intersection positions after we write
these t linearly independent codewords in matrix form by using G. Then, we
may get a new matrix G′ by puncturing those columns of G aforementioned,
and it is possible to preserve the first k2 (and thus the first k1 rows) of G′

still to be independent by making use of the geometric structure of a relative
three-weight code given in (1). Such a puncturing operation above obviously
produces a new t-wise intersecting code generated by G′ only if some columns
of G corresponding to the t-wise intersection positions are preserved. Different
puncturing operations produce different value assignments, and thus produce
different t-wise intersecting codes. Thus, we may get many t-wise intersecting
codes in such a way. Let’s illustrate our method as follows.
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Example 4.1. For q = 2, let k = 5, k1 = 2, k2 = 3, t = 3. Give a value function
as follows:

(7) m(p) =











1, p ∈ S1

2, p ∈ S2

3, p ∈ S3.

Then we have ω1 = m12
k−1 = 16, ω2 = ω1 − 2k−k1−1(m1 − m2) = 20 and

ω3 = ω2−2k−k2−1(m2−m3) = 22. Thus, ω3 > ω2 > ω1 which is corresponding
to Case (i) in Theorem 3.1. So, the 3-wise intersection of binary relative three-
weight codes is (12 )

t−1ω1 = 4. Besides, according to (7), a generator matrix G

of C is












1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0
0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0
0 1 1 1 0 1 0 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 1 1
0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1













.

As in the proof of Case (i) in Theorem 3.1, we select an arbitrary nonzero
codeword c1 from C1 and expand it to 3 linearly independent codewords c1, c2, c3
in C. Then, the intersection of these codewords should achieve the minimum,
that is, (12 )

t−1ω1 = 4. Choose such codewords c1, c2 and c3 satisfying




c1
c2
c3



 =





1 0 0 0 0
0 1 0 0 0
0 0 1 0 0



G

=





1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 0 1 1

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0



.

Observe that the intersecting coordinate positions of c1, c2 and c3 are columns
18, 20, 21 and 22. According to our method, we may construct new 3-intersect-
ing codes by puncturing part of columns 18, 20, 21 and 22 of the matrix G.
As a first step, we puncture column 18 of G and denote the new matrix by
G0. Then, it can be checked that the rows of G0 are still independent, and
thus G0 generates a 5-dimensional code, C0, say. Observe that C0 is 3-wise
intersecting since its 3-wise intersection is equal to 3 (> 0). We may similarly
proceed such puncturing steps, and consider to puncture two of columns 18,
20, 21 and 22 of G, and further three of columns 18, 20, 21 and 22 of G, to
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obtain new matrices. Then, the codes generated by the new matrices remain
to be 5-dimensional 3-wise intersecting codes since they all have nonzero 3-wise
intersections.

The t-wise intersection of a linear constant-weight code and a relative two-
weight code are determined in [8]. Note that our puncturing method also
applies to the results in [8] to obtain new t-wise intersecting codes.
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