• Title/Summary/Keyword: Linear and Threshold Models

Search Result 55, Processing Time 0.025 seconds

Influence of threshold value of computed tomography on the accuracy of 3-dimensional medical model (전산화단층 촬영상의 임계치가 3차원 의학모델 정확도에 미치는 영향에 대한 연구)

  • Lee Byeong-Do;Lee Wan
    • Imaging Science in Dentistry
    • /
    • v.32 no.1
    • /
    • pp.27-33
    • /
    • 2002
  • Purpose: To evaluate the influence of threshold value of computed tomography on the accuracy of rapid prototyping (RP) medical model Material and Methods : CT datas of a human dry skull were transferred from CT scanner via compact disk to a personal computer (PC). 3-dimensional image reconstruction on PC by V-works/sup TM/ 3.0 (CyberMed. Inc.) software and RP models fabrication were followed. 2-RP models were produced by threshold value of 500 and 800 selected in surface rendering process. Linear measurements between arbitrary 12 anatomical landmarks on dry skull, 3-D image model, and 2-RP models were done and compared. Thus, the accuracy of 500 RP and 800RP models was respectively evaluated. Results: There was mean difference (% difference) in absolute value of 2.27 mm (2.73%) between linear measurements of dry skull and 500 RP model. There was mean difference (% difference) in absolute value of 1.94 mm (2.52%) between linear measurements of dry skull and 800 RP model. Conclusion: Slight difference of threshold value in rendering process of 3-D modelling made a influence on the accuracy of RP medical model.

  • PDF

Complex Segregation Analysis of Categorical Traits in Farm Animals: Comparison of Linear and Threshold Models

  • Kadarmideen, Haja N.;Ilahi, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.8
    • /
    • pp.1088-1097
    • /
    • 2005
  • Main objectives of this study were to investigate accuracy, bias and power of linear and threshold model segregation analysis methods for detection of major genes in categorical traits in farm animals. Maximum Likelihood Linear Model (MLLM), Bayesian Linear Model (BALM) and Bayesian Threshold Model (BATM) were applied to simulated data on normal, categorical and binary scales as well as to disease data in pigs. Simulated data on the underlying normally distributed liability (NDL) were used to create categorical and binary data. MLLM method was applied to data on all scales (Normal, categorical and binary) and BATM method was developed and applied only to binary data. The MLLM analyses underestimated parameters for binary as well as categorical traits compared to normal traits; with the bias being very severe for binary traits. The accuracy of major gene and polygene parameter estimates was also very low for binary data compared with those for categorical data; the later gave results similar to normal data. When disease incidence (on binary scale) is close to 50%, segregation analysis has more accuracy and lesser bias, compared to diseases with rare incidences. NDL data were always better than categorical data. Under the MLLM method, the test statistics for categorical and binary data were consistently unusually very high (while the opposite is expected due to loss of information in categorical data), indicating high false discovery rates of major genes if linear models are applied to categorical traits. With Bayesian segregation analysis, 95% highest probability density regions of major gene variances were checked if they included the value of zero (boundary parameter); by nature of this difference between likelihood and Bayesian approaches, the Bayesian methods are likely to be more reliable for categorical data. The BATM segregation analysis of binary data also showed a significant advantage over MLLM in terms of higher accuracy. Based on the results, threshold models are recommended when the trait distributions are discontinuous. Further, segregation analysis could be used in an initial scan of the data for evidence of major genes before embarking on molecular genome mapping.

Recent Review of Nonlinear Conditional Mean and Variance Modeling in Time Series

  • Hwang, S.Y.;Lee, J.A.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.4
    • /
    • pp.783-791
    • /
    • 2004
  • In this paper we review recent developments in nonlinear time series modeling on both conditional mean and conditional variance. Traditional linear model in conditional mean is referred to as ARMA(autoregressive moving average) process investigated by Box and Jenkins(1976). Nonlinear mean models such as threshold, exponential and random coefficient models are reviewed and their characteristics are explained. In terms of conditional variances, ARCH(autoregressive conditional heteroscedasticity) class is considered as typical linear models. As nonlinear variants of ARCH, diverse nonlinear models appearing in recent literature including threshold ARCH, beta-ARCH and Box-Cox ARCH models are remarked. Also, a class of unified nonlinear models are considered and parameter estimation for that class is briefly discussed.

  • PDF

Investigation of Biases for Variance Components on Multiple Traits with Varying Number of Categories in Threshold Models Using Bayesian Inferences

  • Lee, D.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.7
    • /
    • pp.925-931
    • /
    • 2002
  • Gibbs sampling algorithms were implemented to the multi-trait threshold animal models with any combinations of multiple binary, ordered categorical, and linear traits and investigate the amount of bias on these models with two kinds of parameterization and algorithms for generating underlying liabilities. Statistical models which included additive genetic and residual effects as random and contemporary group effects as fixed were considered on the models using simulated data. The fully conditional posterior means of heritabilities and genetic (residual) correlations were calculated from 1,000 samples retained every 10th samples after 15,000 samples discarded as "burn-in" period. Under the models considered, several combinations of three traits with binary, multiple ordered categories, and continuous were analyzed. Five replicates were carried out. Estimates for heritabilities and genetic (residual) correlations as the posterior means were unbiased when underlying liabilities for a categorical trait were generated given by underlying liabilities of the other traits and threshold estimates were rescaled. Otherwise, when parameterizing threshold of zero and residual variance of one for binary traits, heritability estimates were inflated 7-10% upward. Genetic correlation estimates were biased upward if positively correlated and downward if negatively correlated when underling liabilities were generated without accounting for correlated traits on prior information. Residual correlation estimates were, consequently, much biased downward if positively correlated and upward if negatively correlated in that case. The more categorical trait had categories, the better mixing rate was shown.

Genetic parameters for marbling and body score in Anglonubian goats using Bayesian inference via threshold and linear models

  • Figueiredo Filho, Luiz Antonio Silva;Sarmento, Jose Lindenberg Rocha;Campelo, Jose Elivalto Guimaraes;de Oliveira Almeida, Marcos Jacob;de Sousa, Antonio Junior;da Silva Santos, Natanael Pereira;da Silva Costa, Marcio;Torres, Tatiana Saraiva;Sena, Luciano Silva
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.9
    • /
    • pp.1407-1414
    • /
    • 2018
  • Objective: The aim of this study was to estimate (co) variance components and genetic parameters for categorical carcass traits using Bayesian inference via mixed linear and threshold animal models in Anglonubian goats. Methods: Data were obtained from Anglonubian goats reared in the Brazilian Mid-North region. The traits in study were body condition score, marbling in the rib eye, ribeye area, fat thickness of the sternum, hip height, leg perimeter, and body weight. The numerator relationship matrix contained information from 793 animals. The single- and two-trait analyses were performed to estimate (co) variance components and genetic parameters via linear and threshold animal models. For estimation of genetic parameters, chains with 2 and 4 million cycles were tested. An 1,000,000-cycle initial burn-in was considered with values taken every 250 cycles, in a total of 4,000 samples. Convergence was monitored by Geweke criteria and Monte Carlo error chain. Results: Threshold model best fits categorical data since it is more efficient to detect genetic variability. In two-trait analysis the contribution of the increase in information and the correlations between traits contributed to increase the estimated values for (co) variance components and heritability, in comparison to single-trait analysis. Heritability estimates for the study traits were from low to moderate magnitude. Conclusion: Direct selection of the continuous distribution of traits such as thickness sternal fat and hip height allows obtaining the indirect selection for marbling of ribeye.

TAR(Threshold Autoregressive) Model for Short-Term Load Forecasting Using Nonlinearity of Temperature and Load (온도와 부하의 비선형성을 이용한 단기부하예측에서의 TAR(Threshold Autoregressive) 모델)

  • Lee, Gyeong Hun;Lee, Yun Ho;Kim, Jin O
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.9
    • /
    • pp.399-399
    • /
    • 2001
  • This paper proposes TAR(Threshold Autoregressive) model for short-term load forecasting including temperature variable. In the scatter diagram of daily peak load versus daily high or low temperature, we can find out that the load-temperature relationship has a negative slope in the lower regime and a positive slope in the upper regime due to the heating and cooling load, respectively. TAR model is adequate for analyzing these phenomena since TAR model is a piecewise linear autoregressive model. In this paper, we estimated and forecasted one day-ahead daily peak load by applying TAR model using this load-temperature characteristic in these regimes. The results are compared with those of linear and quadratic regression models.

TAR(Threshold Autoregressive) Model for Short-Term Load Forecasting Using Nonlinearity of Temperature and Load (온도와 부하의 비선형성을 이용한 단기부하예측에서의 TAR(Threshold Autoregressive) 모델)

  • Lee, Gyeong-Hun;Lee, Yun-Ho;Kim, Jin-O
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.9
    • /
    • pp.309-405
    • /
    • 2001
  • This paper proposes TAR(Threshold Autoregressive) model for short-term load forecasting including temperature variable. In the scatter diagram of daily peak load versus daily high or low temperature, we can find out that the load-temperature relationship has a negative slope in the lower regime and a positive slope in the upper regime due to the heating and cooling load, respectively. TAR model is adequate for analyzing these phenomena since TAR model is a piecewise linear autoregressive model. In this paper, we estimated and forecasted one day-ahead daily peak load by applying TAR model using this load-temperature characteristic in these regimes. The results are compared with those of linear and quadratic regression models.

  • PDF

Bayesian Analysis of Multivariate Threshold Animal Models Using Gibbs Sampling

  • Lee, Seung-Chun;Lee, Deukhwan
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.2
    • /
    • pp.177-198
    • /
    • 2002
  • The estimation of variance components or variance ratios in linear model is an important issue in plant or animal breeding fields, and various estimation methods have been devised to estimate variance components or variance ratios. However, many traits of economic importance in those fields are observed as dichotomous or polychotomous outcomes. The usual estimation methods might not be appropriate for these cases. Recently threshold linear model is considered as an important tool to analyze discrete traits specially in animal breeding field. In this note, we consider a hierarchical Bayesian method for the threshold animal model. Gibbs sampler for making full Bayesian inferences about random effects as well as fixed effects is described to analyze jointly discrete traits and continuous traits. Numerical example of the model with two discrete ordered categorical traits, calving ease of calves from born by heifer and calving ease of calf from born by cow, and one normally distributed trait, birth weight, is provided.

Introduction of TAR(Threshold Autoregressive) Model for Short-Term Load Forecasting including Temperature Variable (온도를 변수로 갖는 단기부하예측에서의 TAR(Threshold Autoregressive) 모델 도입)

  • Lee, Kyung-Hun;Lee, Yun-Ho;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.184-186
    • /
    • 2000
  • This paper proposes the introduction of TAR(Threshold Autoregressive) model for short-term load forecasting including temperature variable. TAR model is a piecewise linear autoregressive model. In the scatter diagram of daily peak load versus daily maximum or minimum temperature, we can find out that the load-temperature relationship has a negative slope in lower regime and a positive slope in upper regime due to the heating and cooling load, respectively. In this paper, daily peak load was forecasted by applying TAR model using this load-temperature characteristic in these regimes. The results are compared with those of linear and quadratic regression models.

  • PDF

Identifying early indicator traits for sow longevity using a linear-threshold model in Thai Large White and Landrace females

  • Plaengkaeo, Suppasit;Duangjinda, Monchai;Stalder, Kenneth J.
    • Animal Bioscience
    • /
    • v.34 no.1
    • /
    • pp.20-25
    • /
    • 2021
  • Objective: The objective of the study was to investigate the possibility of utilizing an early litter size trait as an indirect selection trait for longevity and to estimate genetic parameters between sow stayability and litter size at different parities using a linear-threshold model for longevity in Thai Large White (LW) and Landrace (LR) populations. Methods: The data included litter size at first, second, and third parities (NBA1, NBA2, and NBA3) and sow stayability from first to fourth farrowings (STAY14). The data was obtained from 10,794 LR and 9,475 LW sows. Genetic parameters were estimated using the multiple-trait animal model. A linear-threshold model was used in which NBA1, NBA2, and NBA3 were continuous traits, while STAY14 was considered a binary trait. Results: Heritabilities for litter size were low and ranged from 0.01 to 0.06 for both LR and LW breeds. Similarly, heritabilities for stayability were low for both breeds. Genetic associations between litter size and stayability ranged from 0.43 to 0.65 for LR populations and 0.12 to 0.55 for LW populations. The genetic correlation between NBA1 and STAY14 was moderate and in a favorable direction for both LR and LW breeds (0.65 and 0.55, respectively). Conclusion: A linear-threshold model could be utilized to analyze litter size and sow stayability traits. Furthermore, selection for litter size at first parity, which was the genetic trait correlated with longevity, is possible when one attempts to improve lifetime productivity in Thai swine populations.