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Genetic parameters for marbling and body score in Anglonubian 
goats using Bayesian inference via threshold and linear models
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Objective: The aim of this study was to estimate (co) variance components and genetic 
parameters for categorical carcass traits using Bayesian inference via mixed linear and thres­
hold animal models in Anglonubian goats.
Methods: Data were obtained from Anglonubian goats reared in the Brazilian Mid-North 
region. The traits in study were body condition score, marbling in the rib eye, ribeye area, fat 
thickness of the sternum, hip height, leg perimeter, and body weight. The numerator relation­
ship matrix contained information from 793 animals. The single- and two-trait analyses were 
performed to estimate (co) variance components and genetic parameters via linear and thres­
hold animal models. For estimation of genetic parameters, chains with 2 and 4 million cycles 
were tested. An 1,000,000-cycle initial burn-in was considered with values taken every 250 
cycles, in a total of 4,000 samples. Convergence was monitored by Geweke criteria and 
Monte Carlo error chain.
Results: Threshold model best fits categorical data since it is more efficient to detect genetic 
variability. In two-trait analysis the contribution of the increase in information and the cor­
relations between traits contributed to increase the estimated values for (co) variance com­
ponents and heritability, in comparison to single-trait analysis. Heritability estimates for the 
study traits were from low to moderate magnitude.
Conclusion: Direct selection of the continuous distribution of traits such as thickness sternal 
fat and hip height allows obtaining the indirect selection for marbling of ribeye.

Keywords: Bayesian Inference; Carcass; Components of (co) Variance; Gibbs Sampling; 
Heritability

INTRODUCTION 

In animal breeding programs several traits are evaluated to identify genotypes with higher 
average according to the proposed objectives. The analyzed data for this purpose may be 
continuous, as an example of measurement performed in the loin eye area, which is assumed 
to have normal distribution, or discontinuous such as the case of categorical traits as carcass 
marbling. However, to obtain estimates of (co) variance components and genetic parameters 
for categorical data, some approaches that consider the discrete data distribution should be 
used to ensure greater accuracy of the estimates.
  Within the categorical traits in meat goat production, the score assigned in the evaluation 
of body condition of animals is a criterion that has been used for carcass in vivo evaluation, 
whose advantage is to obtain information of the nutritional status of animals. In goats, this 
technique is widely applied, however the use of ultrasound to evaluate carcass in live animals 
has spread because it enables the identification of carcass marbling based on intramuscular 
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fat. It is a type of data with discrete distribution in which the 
longissimus dorsi is the main muscle for evaluation in the living 
animal.
  The estimation method with establishment of a model that 
correctly describes the nature of categorical data is an impor­
tant factor to obtain genetic parameters [1]. The methodology 
of Mixed Linear Models is the most common means of estima­
ting (co) variance components for traits of economic interest 
since this methodology has easy application in animal model 
and requires less time in data processing. However, it is nec­
essary that the analyzed traits have normal distribution, which 
is noticed only in continuous data. Thus, the use of important 
characteristics for animal breeding which assume discrete 
distribution is limited. Genetic analyses would not be appro­
priate using linear models [2,3]. Therefore, the use of threshold 
models is recommended, because they are more efficient in 
detecting genetic variability, in comparison to linear models 
[3].
  With the use of threshold model it is considered there is an 
unobservable variable that takes the normal distribution un­
derlying the discrete variable. The variable connection observed 
with the underlying continuous scale is made by a set of fixed 
thresholds. Thus, the underlying variable, defined as the sum 
of genetic and environmental effects which affect the suscep­
tibility of a trait [2], is described by a linear model, but the 
relationship of this variable to the observed scale is non-linear 
[4,5].
  By comparison, the genetic gain estimated from genetic 
analysis of categorical data obtained by threshold models are 
higher due to the achievement of higher heritability in the un­
derlying scale [6], thus resulting in better identification of 
higher value genotypes.
  With the advent of increasingly powerful processors, the 
Bayesian methodology reemerged as statistical tool to estimate 
components of (co) variance and genetic parameters in animal 
breeding. Bayesian inference allows the use of prior informa­
tion of the studied trait being included in the analysis through 
information of a prior distribution of the parameters to be 
analyzed along with its uncertainty before the observation 
data. It also considers the different distributions of the studied 
data, increasing the accuracy of estimates and predictions.
  The aim of this study was to estimate (co) variance com­
ponents and genetic parameters for categorical carcass traits 
using Bayesian inference via mixed linear and threshold ani­
mal models in Anglonubian goats reared in the Mid-North 
region of Brazil.

MATERIALS AND METHODS 

The experimental procedure was approved by the Institutional 
Animal Care and Use Committee at Federal University of Piauí, 
Brazil (009/14).

  The database used in this research consisted of genea­
logical and production information measured in registered 
Anglonubian goats with genealogical records reared in the 
states of Piauí and Maranhão (Mid-North region of Brazil). 
The field data collection was carried out from the years 2012 
to 2014.
  The traits evaluated in this study were: body condition score 
(BCS), marbling in the rib eye (MRE), ribeye area (REA), fat 
thickness of the sternum (FTS), hip height (HH), leg perimeter 
(LP), and body weight. These traits were measured at the same 
time in each animal. Goats of both sexes, aged from seven 
months and healthy were eligible to participate.
  For standardization during the farms data collection the 
following steps were adopted: after weighing on a scale with 
a capacity of 200 kg and precision of 0.10 kg, BCS of each 
animal was measured based on palpation and visualization 
of the lower back region, mimicking up motion grippers ap­
plying constant pressure around and between the transverse 
and spinal apophyses, also in the sternal region, assessing 
the amount of skin, muscle and fat density in two anatomi­
cal regions, according to methodology cited by [7]. The score 
assigned for each individual was based on the perception of 
the fat and muscle deposition in the evaluated areas, taking 
as a base values from one (lowest fat deposition) to five (ex­
cessive deposition of fat).
  Thereafter, the following morphometric measurements were 
taken using hipometer and measure tape while the animal 
was restrained in a comfortable standing position: HH, dis­
tance between the sacral tuberosity of the ilium and the soil; 
and LP, measured on the median part of the leg above the 
femoral-tibial-rotulian articulation (in centimeters).
  In vivo evaluation of carcass was performed by means of 
ultrasound images captured using the apparatus Chison 600M 
equipped with linear transducer (13 cm) using a set of fre­
quency 5.0 MHz.
  The REA (in cm²) was measured through ultrasonographic 
cross-sectional images of the longissimus dorsi muscle in the 
intercostal space between the 12th and 13th ribs. With the 
same image the MRE was evaluated with by assigning grades 
from 0 (absence of intramuscular fat) to 6 points (abundance 
of intramuscular fat). This visual grading scale was an adap­
tation of that used by [8].
  The subcutaneous FTS, given in mm, proposed by [9] to 
indicate carcass fat thickness was measured from ultrasound 
images of mediastinal sternal region (3rd bone of the sternum). 
During ultrasound readings animals were restrained, in order 
to keep their comfort for better quality images.
  In the statistical analyses it was assumed that the BCS and 
MRE data follow discrete distribution while REA, FTS, HH, 
and LP follow continuous distribution, so that these traits were 
considered anchors in two-trait analyses with the two cate­
gorical traits.
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  Information of months in which data were collected was 
grouped in two collection seasons (CS): rainy season, from 
January to May; and dry season, from June to December. The 
birth month of animal was also distributed in two birth sea­
sons, namely rainy and dry seasons, similar to the format of 
CS. The age of the animal at the time of collection was grouped 
into age classes (AC), as follows: AC = 1, animals >six months 
and <two years; AC = 2, animals >two years but <four years; 
AC = 3, animals >four years. Finally, the evaluated goats were 
grouped into animal category (CAT) as follows: pregnant, 
kidding, and dry breeding does. In the formation of the con­
temporary group (CG), animals born on the same farm, in 
the same year, and same sex were taken into consideration.
  The data were edited and formatted with the statistical 
program SAS (SAS Inst. Inc., Cary, NC, USA). After the con­
sistency analyses a file containing animal information, parent, 
CG, year of collection (YC), age group (AC), animal category 
(CAT), and observations relating to the analyzed traits, total­
ing 385 animals with observations was edited. At the end, the 
numerator relationship matrix of Wright contained informa­
tion from 793 different animals.
  The components of (co) variance and genetic parameters 
were estimated via linear and threshold animal model by 
Bayesian inference in single and two-trait analyses. Two-trait 
analyses were performed by combining the two categorical 
traits (two by two) with the continuous ones, totaling 11 anal­
yses. Thus, two-trait analyses were performed in animal model, 
assuming two different distributions in the same analysis.
  Estimates of genetic parameters via Bayesian Inference were 
calculated with the aid of GIBBS1F90 and THRGIBBS1F90 
applications, used for linear and threshold models, respec­
tively [10], by testing chains with 2 and 4 million cycles. The 
length of the chain used to compare models and generate the 
posterior distribution of the (co) variance components and 
genetic parameters of the BCS and MRE was 2 million, since 
both generated similar estimates. This similarity was consid­
ered as the criterion of convergence.
  After burn-in of the first 1,000,000 samples samples were 
taken apart at every 250 cycles (sampling interval), resulting 
in a posteriori distribution with 4,000 samples in which in­
ferences were performed. Values for burn-in and sampling 
interval were defined based on preliminary analyses in which 
the convergence and distribution of samples were evaluated 
through the POSTGIBBS1F90 program [10], which uses the 
Geweke diagnostic test [11] based on the Z test of average 
equality of the conditional distribution data logarithm.
  The animal model in matrix notation was: y = Xβ+Zα+ε, 
in which: y = vector of observations of the studied traits (under­
lying scales for categorical traits); X = matrix n×f of incidence 
(n = total of observations, and f the number of fixed effects 
of classes), which relates the findings to the systemic effects; 
β = vector of systemic effects of CG (formed by animals raised 

on the same farm, born in the same year and season, and eval­
uated in the same season), YC, AC, and CAT; Z = the matrix 
n×N of incidence, which lists the observations to genetic addi­
tive direct effects, where n is the total number of observations 
and N number of individuals; α = vector of random effects 
representing the direct genetic additive values for each animal 
(animal model); and e = vector of residual random errors as­
sociated to the observations.
  In Bayesian analysis the systemic and random effects in­
cluded in the model are considered as random variables.
  The accepted assumptions, with a focus on Bayesian meth­
odology, about the information (y) and data (β, α, and 
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2 𝑡𝑡1 < 𝑈𝑈𝑖𝑖 ≤ 𝑡𝑡2
3 𝑡𝑡2 < 𝑈𝑈𝑖𝑖 ≤ 𝑡𝑡3
4 𝑡𝑡3 < 𝑈𝑈𝑖𝑖 ≤ 𝑡𝑡4
5 𝑡𝑡4 < 𝑈𝑈𝑖𝑖 ≤ 𝑡𝑡5 
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Where n is the number of observations for each trait. 184 

As the residual variance is not estimable in threshold models, the parameter was assigned a value of 1 in 185 

order to obtain identifiability in the likelihood function [12]. This assumption is standard in categorical data 186 

analysis. 187 

Flat was defined (uninformative a priori distribution) for all initial variance, in other words, did not reflect 188 

the knowledge about the parameters to be estimated. 189 

As the best model selection criteria for the traits in study it was used: deviance information criterion (DIC), 190 

which is obtained based on the posterior distribution of the deviation statistic [13]; and bayes factor (BF), which 191 

is the reason of marginal likelihoods between two models [14]. 192 

DIC is a model comparison criterion following the proposition of [15], who suggests that comparisons 193 

among models are based on a posteriori distributions of the deviance of each model, being defined by: 𝐷𝐷𝐷𝐷𝐷𝐷 =194 

𝐷̅𝐷(𝜃𝜃) + 𝑝𝑝𝐷𝐷; in which: 𝐷̅𝐷(𝜃𝜃) is the global adjustment measure that is the posteriori average of the deviance; pD is 195 

the penalty for complexity of the model (effective number of parameters) given by the difference between the 196 

average posteriori of the deviance and the deviance of the averages a posteriori of the model parameters of 197 
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model of DIC were lower than those for linear model, this indicates that it was the best model to fit the data in 227 

  In analysis with two models (Mi and Mj), the BF was defined 
as the reason for the marginal likelihoods of these two models: 
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G0, additive genetic (co) variance matrix among traits; I, iden­
tity matrix; and R0, residual (co) variance matrix among traits.
  Convergence was monitored by Geweke criteria [11] and 
error of Monte Carlo chain, which was obtained by calculat­
ing the variance of samples for each component divided by 
the number of samples. Thus, the square root of this value 
refers to the approach of the error standard deviation associ­
ated with the size of Gibbs chain [16].

RESULTS 

Table 1 shows the descriptive statistics of MRE and BCS traits. 
For the other characteristics considered as "anchors" in multi-
trait analysis descriptive statistics were presented in [17]. 
Because they are categorical qualitative data, MRE and BCS 
were represented more efficiently by the central tendency 
statistics, namely Median and Mode, which showed value 3.
  In the examination of chain convergence, the Geweke cri­
terion was significant (p<0.05) (Table 2), indicating that the 
chains of the converged parameters and the number of iter­
ations were appropriate, thus validating the estimates of a 
posteriori distribution parameters, according to [11]. 
  Comparing the linear model with the threshold applied to 
categorical data, using the DIC criteria, and the BF, it was ob­
served that the threshold DIC model showed values equal to 
421.00 and 706.74 (Table 2), whereas the linear model pre­
sented 956.44 and 1,176.10 for BCS and MRE, respectively. 
Thus, as the values of the threshold model of DIC were lower 
than those for linear model, this indicates that it was the best 
model to fit the data in study, consequently the most recom­
mended model for obtaining estimates of genetic parameters 
for BCS and MRE in goats.
  BF, according to the used criterion, showed values lower 

Table 1. Descriptive statistics of categorical traits of marbling ribeye (MRE) and 
body condition score (BCS), in Anglonubian goats

Trait Average Median Mode SD VC s2

MRE 2.55 3.00 3.00 1.16 45.71 1.36
BCS 3.27 3.00 3.00 1.11 34.11 1.24

SD, standard deviation; VC, variation coefficient; s2, variance.

Table 2. Additive variance estimates and heritability (h²) of categorical characteristics body condition score (BCS) and the loin marbling (MRE), obtained from analysis with 
linear model and threshold model

Trait Model
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Estimates of genetic parameters via Bayesian Inference were calculated with the aid of GIBBS1F90 and 142 

THRGIBBS1F90 applications, used for linear and threshold models, respectively [10], by testing chains with 2 143 

and 4 million cycles. The length of the chain used to compare models and generate the posterior distribution of 144 

the (co) variance components and genetic parameters of the BCS and MRE was 2 million, since both generated 145 

similar estimates. This similarity was considered as the criterion of convergence. 146 

After burn-in of the first 1,000,000 samples samples were taken apart at every 250 cycles (sampling interval), 147 

resulting in a posteriori distribution with 4,000 samples in which inferences were performed. Values for burn-in 148 

and sampling interval were defined based on preliminary analyses in which the convergence and distribution of 149 

samples were evaluated through the POSTGIBBS1F90 program [10], which uses the Geweke diagnostic test 150 

[11] based on the Z test of average equality of the conditional distribution data logarithm. 151 

The animal model in matrix notation was: y = Xβ+Zα+ε, in which: y = vector of observations of the studied 152 

traits (underlying scales for categorical traits); X = matrix n×f of incidence (n = total of observations, and f the 153 

number of fixed effects of classes), which relates the findings to the systemic effects; β = vector of systemic 154 

effects of CG (formed by animals raised on the same farm, born in the same year and season, and evaluated in 155 

the same season), YC, AC, and CAT; Z = the matrix n×N of incidence, which lists the observations to genetic 156 

additive direct effects, where n is the total number of observations and N number of individuals; α = vector of 157 

random effects representing the direct genetic additive values for each animal (animal model); and e = vector of 158 

residual random errors associated to the observations. 159 

In Bayesian analysis the systemic and random effects included in the model are considered as random 160 

variables. 161 

The accepted assumptions, with a focus on Bayesian methodology, about the information (y) and data (β, α, 162 

and 𝜎𝜎𝑒𝑒
2 ), which assumes multivariate normal distribution, is represented as: 𝑦𝑦|𝛽𝛽, 𝛼𝛼, 𝜎𝜎𝑒𝑒

2~𝑁𝑁(𝑋𝑋𝑋𝑋 + 𝑍𝑍𝑍𝑍 + 𝐼𝐼𝜎𝜎𝑒𝑒
2); 163 

𝛼𝛼|𝐴𝐴, 𝜎𝜎𝑎𝑎
2~𝑁𝑁(0, 𝐴𝐴𝜎𝜎𝑎𝑎

2); 𝑒𝑒|𝑒𝑒, 𝜎𝜎𝑒𝑒
2~𝑁𝑁(0, 𝐼𝐼𝜎𝜎𝑒𝑒

2); thus: 𝜎𝜎𝑎𝑎
2 and 𝜎𝜎𝑒𝑒

2 , components of additive direct genetic and residual 164 

(co) variance, respectively; A, numerators matrix of Wright's inbreeding coefficient; and I, identity matrix of 165 

equal order to the number of animals with observations. 166 

In the threshold model the underlying scale assumes normal distribution represented as: 𝑈𝑈|𝜃𝜃~𝑁𝑁(𝑊𝑊𝑊𝑊, 𝐼𝐼𝜎𝜎𝑒𝑒
2); 167 

in which U is a vector of scale base of origin r; θ = (b, a) is the location vector of order parameters s with b 168 

(fixed effects in frequentist analysis) and order s with a (random genetic additive direct effect); W is a matrix 169 

incidence of order r  by s; I is an identity matrix of order r  by r; and 𝜎𝜎𝑒𝑒
2 is the residual variance. 170 

The conditional probability that 𝑦𝑦𝑖𝑖 that falls into the category j (1, 2, 3, 4, 5: BCS; and 1, 2, 3, 4, 5, 6: MRE) 171 

h2 Geweke 
(p-value) MCE CI DIC BF

BCS (grade 1 to 5) Linear 0.20 0.29 0.04 0.002 0.00-0.36 956.44 0.45
Threshold 2.23 0.11 0.03 0.001 0.00-0.14 412.00*

MRE (grade 1 to 6) Linear 0.12 0.12 0.00 0.001 0.00-0.23 1,176.10 0.62
Threshold 0.11 0.03 0.00 0.000 0.00-0.04 706.74*
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than 1, since the denominator model was the threshold, then 
confirming that it is the most recommended for the inference 
of parameters, as interpretation proposed by [14]. 
  Estimates of heritability for BCS and MRE traits (0.11 and 
0.03, respectively) obtained by the threshold model were lower 
than the values estimated by linear model. BCS equals to 0.29 
and MRE equals to 0.12. The confidence intervals of herita­
bility estimates showed variation of low magnitude when 
estimated by the threshold model. This amplitude permits 
inference with a greater reliability of the quality of the esti­
mates.
  In two-trait analyses, where the marbling and BCS were 
paired with other traits with continuous distribution, it was 
used the threshold model for the categories that were the best 
adjustment for the ones used in single-trait analysis, while for 
continuous distribution the model was linear (Table 2). 
  The estimated heritability for continuous traits ranged from 
moderate (0.24) to high magnitude (0.54) (Table 3). Table 4 
provides estimates of genetic correlations of the categorical 
traits BCS and MRE with those considered "anchor" in two-
trait analyses (REA, FTS, HH, LP, and body weight), in which 
values were positive and had low to moderate magnitude with 
the exception of the association between BCS and HH equals 
zero.

DISCUSSION 

The good availability of food for the evaluated animals in study 
is well portrayed by the amount of body condition presented, 
in which the average was 3.27, higher than the median and 
mode. Therefore, animals with good tissue composition in 
terms of muscle mass in the lower back were samped. It is 
noteworthy, however, that animals which participated in ex­
hibitions at agricultural fairs were also sampled, and this partly 
explains the relatively high value of the observed variation 
coefficient.
  In addition, since BCS and MRE are evaluated subjective­
ly, these traits are greatly influenced by the experience of the 
appraiser and environmental factors such as food, physiologi­

cal status, and health, which in this study are embedded in 
the value of CV 45.71 and 34.11 for BCS and MRE, respec­
tively, enhancing the role of phenotypic variability that should 
be considered carefully if included in animal breeding pro­
grams.
  For the carcass fat thickness based on the value of MRE, the 
average of 2.55 points, that median and mode corrected to 
3.0, is greater than what was found by [18] in crossbred goats 
SRD×Boer (2.10) and SRD×Anglonubian (2.20). Despite these 
authors having assigned a slightly larger value directly to the 
carcass, which reinforces the evidence that intramuscular fat 
condition observed in this study has the potential to meet the 
market demands, considering that goats are seen as animal 
lean meat.
  The superiority when comparing to the goats values to 
other genotypes, focusing on meat production, is explained 
by the case that the animals were intended for breeding were 
kept under more appropriate management. However, such 
superiority was also influenced by age, since animals aged 7 
months were evaluated. After this age there is the possibility 
of increased deposition of fat in the carcass [19].
  The good body condition and potential of carcass marbling 
of the animals in study are emphasized when compared to 
results obtained in sheep. For MRE, the average value was 2.55 
points, close to that observed in crossbred undefined sheep 
breed (SRD)×Santa Inês (2.98), which did not differ statisti­
cally from crossbred lambs SRD×Texel [20]. Thus, due the 
lack of studies to assess these traits in goats, the observed values 

Table 3. Estimates of the (co) variance and heritability (h²) components of body condition score characteristics (BCS), the loin marbling (MRE), ribeye area (REA), fat 
thickness of the sternum (FTS), hip height (HH), the leg perimeter (LP) and body weight, obtained in two-trait analysis
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h2 Geweke 
(p-value) MCE IC

BCS (grade 1 to 5) 3.48 22.71 0.13 0.00 0.001 0.00-0.17
MRE (grade 1 to 6) 0.40 3.81 0.09 0.03 0.000 0.00-0.08
REA (cm2) 0.79 2.03 0.28 0.01 0.002 0.03-0.37
FTS (mm) 0.55 1.77 0.24 0.00 0.001 0.03-0.34
HH (cm) 3.91 8.29 0.32 0.03 0.002 0.07-0.41
LP (cm) 6.75 9.55 0.41 0.02 0.003 0.16-0.47
Body weight (kg) 62.23 52.78 0.54 0.00 0.003 0.51-0.55
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Table 4. Genetic correlations of categorical traits of marbling ribeye (MRE) and 
body condition score (BCS) with ribeye area, fat thickness sternal, hip height, leg 
perimeter, and body weight

Continuous distribution traits MRE BCS

Body condition score 0.58 -
Ribeye area 0.03 0.32
Fat thickness sternal 0.58 0.04
Hip height 0.88 0.00
Leg perimeter 0.03 0.09
Body weight 0.13 0.30
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in this study are close to those observed in sheep [21].
  Based on the Monte Carlo error (MCE), low values for both 
the analyses with linear and threshold models confirm the 
convergence, because according to [16], this occurs when the 
error value is added to the average estimate of distribution 
posteriori heritability coefficient, it does not change the value 
of this estimate, considering the second decimal place, as 
shown in Table 2.
  Therefore, the convergence monitored by Geweke criterion 
and MCE indicated that the chain size used in this study was 
appropriate and the amount a posteriori were heritability valid 
estimates of categorical traits.
  There is tendency of BF to be more sensitive to the choice 
of the prior distribution than the a posteriori interval proba­
bility [14]. Thus, the threshold model was presented as the 
greater one with ability to detect the genetic variability in MRE 
and BCS, when compared to the linear model, according to 
[3], related to the efficiency of this model for categorical data.
  Even considering that in the literature there are few stud­
ies that compare linear and threshold models for analysis of 
categorical carcass traits in goats, our results agree with the 
consulted studies, mostly with cattle and sheep, indicating 
that the use of threshold model provides more accurate esti­
mates than the linear model [22,23]. However, studies have 
not verified differences among models [24].
  The lower variability of the genetic components of cate­
gorical traits, when estimated by linear model, could be an 
evidence of the inadequacy of its use for traits with this dis­
tribution, which may result in estimates that cause wrong 
inferences [22]. Reflections of this are that estimates of heri­
tability for BCS and MRE traits may be overestimated using 
this model, leading to genetic progress estimation with low 
accuracy.
  It was found that the use of the threshold model resulted 
in lower estimates for obtaining the studied heritability of cate­
gorical traits, because the residual variance estimates differed 
markedly between threshold and linear models. In addition, 
as the credibility regions do not overlap, this leads to rejection 
of statistical hypothesis of equality between the estimates 
generated by the two models [1].
  As seen in the single-trait analysis, it was found that the 
Geweke convergence criterion presented significance level 
lower than 0.05, and MCE was low for all analyses (Table 3), 
implying that the Bayesian analysis with linear threshold model 
was adequate for obtaining a posteriori distribution estimates 
of the parameters in two-trait analyses.
  It was found in two-trait analyses increased contribution 
of the considered information number and also influence of 
the correlations between the characteristics to increase the 
estimated values for the components of (co) variance and 
heritability values of the traits in study (Table 3), since there 
was recovery of part of the additive genetic variance that 

was incorporated into the residual variance in single-trait 
analysis (Table 2).
  Adipose tissue is the component of the carcass which has 
the highest variability and influence of the environment [25], 
which might also be inherent in the MRE behavior that is in­
tramuscular fat located in the longissimus dorsi. Thus, it is 
considered that this fact is an explanation for the low herita­
bility estimates for MRE, and then much of the phenotypic 
variability of the trait is explained by environmental compo­
nent, so it is important to pay attention to the environmental 
factors that influence the phenotypic expression of marbling.
  The consulted literature was incipient to the heritability 
estimates of BCS and carcass marbling in goats. However, the 
heritability values of the traits MRE and BCS equal to 0.13 
and 0.09, respectively. These values higher than the univariate 
analysis with threshold model, are of low magnitude, then 
show little potential response to selection based on these char­
acteristics in the evaluated breed.
  So, there is low possibility for response to direct selection 
or by including these traits in selection indexes. Therefore, 
considering the producer interest in higher meat production 
and carcass yield, the index should prioritize animal selection 
with higher genetic value in REA, if the interest is the finish­
ing precocity the FTS gains importance.
  These categorical traits should not be considered solely in 
meat goat breeding programs, because besides the amount of 
meat, the carcass needs adipose protection for cooling, which 
is guaranteed by the presence of subcutaneous fat, addition­
ally it can be considered an early indicator of development 
[26]. Therefore, both REA and FTS should be considered in 
meat goats breeding programs and the heritability coefficient 
estimates of 0.28 and 0.24, respectively, both have potential 
to make beef goats selection indexes.
  It is observed in Table 4 that MRE showed moderate genetic 
association with BCS, so there are common genes responsible 
for the expression of these traits. Therefore, there is potential 
for genetic gain by selecting one of them as a phenotypic 
marker, or both do not necessarily need to be in the same 
selection index. Thus, it is evident the importance of identi­
fying correlated response when selection is based on a trait 
and the intention is also to improve another one, which is 
defined by the genetic correlation between them, but also in­
fluences the heritability of traits involved [27].
  Identical situation was observed in the genetic correlation 
between FTS and MRE (0.58). So, considering the ease of mea­
suring the thickness of subcutaneous fat in the sternal region, 
it is indication useful means of indirect selection for marbling. 
The heritability of FTS being 0.24 suggests the inclusion of 
this trait in the selection indexes for carcass production with 
good grades of marbling.
  Thus, BCS and FTS would be more suitable to be included 
in the composition of selection indexes, since they have higher 



www.ajas.info    1413

Figueiredo Filho et al (2018) Asian-Australas J Anim Sci 31:1407-1414

heritability, but with equal values to 0.13 and 0.24, respectively, 
which are considered low values for direct selection purposes 
(Table 3). However, as the genetic correlations between these 
traits and marbling were equal to 0.58 (Table 4), this indicates 
that there is an increasing trend in the carcass marbling.
  However, BCS and FTS did not appear to be genetically 
correlated with each other, which was unexpected and fails 
to explain the presence of genetic correlation of moderate am­
plitude of both to the marbling. In other words due to existence 
of genes in common. However, it is relevant to consider that 
these traits are measured almost directly in the longissimus 
dorsi.
  Considering that the estimated genetic correlation between 
MRE and HH was equal to 0.88 (Table 4) and the estimated 
heritability for HH was 0.32 (Table 3), it is a good indication 
that the selection based on HH can provide, indirectly, higher 
genetic progress in the carcass marbling. In this case the HH 
could be a potential alternative of a phenotypic marker for 
carcass marbling improvement. This has also the advantage 
of high heritability, combined with ease of measurement at 
low cost. However, it can be considered that taller animals 
grow faster and tend to have less fat [28].
  The genetic association of MRE with REA was small (0.03), 
implying low potential response correlated by selection based 
on the other one. As REA showed heritability equals to 0.28, 
considered moderate magnitude and response potential to 
direct selection, which was also found in cattle. It is recom­
mended to compose selection indexes in the breed and it will 
not interfere in carcass marbling. The deposition profile of 
these tissues in the carcass may be related to this result, be­
cause as the muscle is earlier developed than the adipose tissue, 
which implies in low correlation between these characteristics 
[28].
  It is also observed that the genetic correlation between body 
weight and loin marbling had low magnitude, showing that 
heavy animals and, consequently, with better body condition, 
do not necessarily present greater amount of fat in the carcass. 
This result can be seen as an indication that goats present the 
"lean meat animal" profile, which has the disadvantage of 
limiting cryopreservation. On the other hand, it would meet 
market demands of low-fat products.

IMPLICATIONS 

Heritability estimates for categorical traits of BCS and car­
cass marbling using ultrasound were from low to moderate 
magnitude, so genetic progress is possible with animal se­
lection based on these characteristics. The two-trait analysis 
provided higher estimates of heritability for the traits in study. 
The threshold model showed best adjustment for categorical 
characteristics, BCS, and carcass marbling using ultrasound, 
with overestimation trend of heritability when the data were 

submitted to analysis under the linear model. Direct selec­
tion of the continuous distribution of characteristics, such as 
thickness sternal fat and HH, allows obtaining the indirect 
selection for ribeye marbling.
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