• Title/Summary/Keyword: Linear Time Complexity

Search Result 247, Processing Time 0.029 seconds

Reduced Complexity Signal Detection for OFDM Systems with Transmit Diversity

  • Kim, Jae-Kwon;Heath Jr. Robert W.;Powers Edward J.
    • Journal of Communications and Networks
    • /
    • v.9 no.1
    • /
    • pp.75-83
    • /
    • 2007
  • Orthogonal frequency division multiplexing (OFDM) systems with multiple transmit antennas can exploit space-time block coding on each subchannel for reliable data transmission. Spacetime coded OFDM systems, however, are very sensitive to time variant channels because the channels need to be static over multiple OFDM symbol periods. In this paper, we propose to mitigate the channel variations in the frequency domain using a linear filter in the frequency domain that exploits the sparse structure of the system matrix in the frequency domain. Our approach has reduced complexity compared with alternative approaches based on time domain block-linear filters. Simulation results demonstrate that our proposed frequency domain block-linear filter reduces computational complexity by more than a factor of ten at the cost of small performance degradation, compared with a time domain block-linear filter.

A Study on the Complexity of the Simplex Method (심플렉스 기법의 복잡성에 관한 연구)

  • Jeong Seong-Jin
    • Journal of the military operations research society of Korea
    • /
    • v.9 no.2
    • /
    • pp.57-60
    • /
    • 1983
  • We show that the complexity of Simplex Method for Linear Programming problem is equivalent to the complexity of finding just an adjacent basic feasible solution if exists. Therefore a simplex type method which resolves degeneracy in polynomial time with respect to the size of the given linear programming problem can solve the general linear programming problem in polynomial steps.

  • PDF

Complete Time Algorithm for Stadium Construction Scheduling Problem

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.9
    • /
    • pp.81-86
    • /
    • 2015
  • This paper suggests heuristic algorithm with linear time complexity to decide the normal and optimal point at minimum loss/maximum profit maximum shortest scheduling problem with additional loss cost and bonus profit cost. This algorithm computes only the earliest ending time for each node. Therefore, this algorithm can be get the critical path and project duration within O(n) time complexity and reduces the five steps of critical path method to one step. The proposed algorithm can be show the result more visually than linear programming and critical path method. For real experimental data, the proposed algorithm obtains the same solution as linear programming more quickly.

Improvement of Group Delay and Reduction of Computational Complexity in Linear Phase IIR Filters

  • Varasumanta, Saranuwaj;Sookcharoenphol, Dolchai;Sriteraviroj, Uthai;Janjitrapongvej, Kanok;Kanna, Channarong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.955-959
    • /
    • 2003
  • A technique for realizing linear phase IIR filters has been proposed by Powell-Chau which gives a real-time implementation of H(z-1).H(z), where H(z) is a causal nonlinear phase IIR filter. Powell-Chau system is linear but not timeinvariant system. Therefore, that system has group delay response that exhibits a minor sinusoidal variation superimposed on a constant value. In the signal processing, this oscillation seriously degrade the signal quality. Unfortunately, that system has a large sample delay of 4L and also more computational complexity. Proposed system is present a reduced computational complexity technique by moved the numerator polynomial of H(1/z) out to cascade with causal filter H(z) and remain only all-pole of H(1/z), then applied truncated infinite impulse response to finite with truncated IIR filtel $H_L$(z) and L sample delay to subtract the output sequence from the top and bottom filter. Proposed system is linear time invariance and group delay response and total harmonic distortion are also improved.

  • PDF

On a Two Dimensional Linear Programming Knapsack Problem with the Extended GUB Constrain (확장된 일반상한제약을 갖는 이차원 선형계획 배낭문제 연구)

  • Won, Joong-Yeon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.1
    • /
    • pp.25-29
    • /
    • 2001
  • We present a two dimensional linear programming knapsack problem with the extended GUB constraint. The presented problem is an extension of the cardinality constrained linear programming knapsack problem. We identify some new properties of the problem and derive a solution algorithm based on the parametric analysis for the knapsack right-hand-side. The solution algorithm has a worst case time complexity of order O($n^2logn$). A numerical example is given.

  • PDF

Iterative Multiple Symbol Differential Detection for Turbo Coded Differential Unitary Space-Time Modulation

  • Vanichchanunt, Pisit;Sangwongngam, Paramin;Nakpeerayuth, Suvit;Wuttisittikulkij, Lunchakorn
    • Journal of Communications and Networks
    • /
    • v.10 no.1
    • /
    • pp.44-54
    • /
    • 2008
  • In this paper, an iterative multiple symbol differential detection for turbo coded differential unitary space-time modulation using a posteriori probability (APP) demodulator is investigated. Two approaches of different complexity based on linear prediction are presented to utilize the temporal correlation of fading for the APP demodulator. The first approach intends to take account of all possible previous symbols for linear prediction, thus requiring an increase of the number of trellis states of the APP demodulator. In contrast, the second approach applies Viterbi algorithm to assist the APP demodulator in estimating the previous symbols, hence allowing much reduced decoding complexity. These two approaches are found to provide a trade-off between performance and complexity. It is shown through simulation that both approaches can offer significant BER performance improvement over the conventional differential detection under both correlated slow and fast Rayleigh flat-fading channels. In addition, when comparing the first approach to a modified bit-interleaved turbo coded differential space-time modulation counterpart of comparable decoding complexity, the proposed decoding structure can offer performance gain over 3 dB at BER of $10^{-5}$.

Investigation into Longitudinal Writing Development Using Linear Mixed Effects Model (선형 혼합 모형을 통해 살펴본 쓰기 능력의 장기적인 발전 양상 탐색)

  • Lee, Young-Ju
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.315-319
    • /
    • 2022
  • This study investigates longitudinal writing development in terms of syntactic complexity using linear mixed effects (LME) model. This study employs essays written by four case study participants. Participants voluntarily wrote essays outside of the classroom and submitted the first and second drafts, after reflecting on the automated writing evaluation feedback (i.e., Criterion) every month over one year. A total of 48 first drafts were analyzed and syntactic complexity features were selected from Syntactic Complexity Analyzer. Results of LME showed that there was a significant positive linear relationship between time and mean length of T-unit and also between time and the ratio of dependent clauses to independent clauses, indicating that case study participants wrote longer T-units and also a higher proportion of dependent clauses over one year.

Novel Pilot-Assisted Channel Estimation Techniques for 3GPP LTE Downlink with Performance-Complexity Evaluation

  • Qin, Yang;Hui, Bing;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7A
    • /
    • pp.623-631
    • /
    • 2010
  • In this paper, various of pilot-assisted channel estimation techniques for 3GPP LTE downlink are tested under multipath Rayleigh fading channel. At first, the conventional channel estimation techniques are applied with linear zero-forcing (ZF) equalizer, such as one dimensional least square (1-D LS) linear interpolation, two dimensional (2-D) wiener filter, the time and frequency dimension separate wiener filter and maximum likelihood estimator (MLE). Considering the practical implementation, we proposed two channel estimation techniques by combining time-dimension wiener filter and MLE in two manners, which showed a good tradeoff between system performance and complexity when comparing with conventional techniques. The nonlinear decision feedback equalizer (DFE) which can show a better performance than linear ZF equalizer is also implemented for mitigating inter-carrier interference (ICI) in our system. The complexity of these algorithms are calculated in terms of the number of complex multiplications (CMs) and the performances are evaluated by showing the bit error rate (BER).

Polynomial Time Algorithm for Worker Assignment Problem (작업자 배정 문제의 다항시간 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.159-164
    • /
    • 2022
  • The linear assignment problem (LAP) and linear bottleneck assignment problem (LBAP) has been unknown the algorithm to solve the optimal solution within polynomial-time. These problems are classified by NP-hard. Therefore, we can be apply metaheuristic methods or linear programming (LP) software package or Hungarian algorithm (HA) with O(m4) computational complexity. This paper suggests polynomial time algorithm with O(mn)=O(m2),m=n time complexity to LAP and LBAP. The select-delete method is simply applied to LAP, and the delete-select method is used to LBAP. For the experimental data without the unique algorithm can be apply to whole data, the proposed algorithm can be obtain the optimal solutions for whole data.

Asynchronous Linear-Pipeline Dynamics and Its Application to Efficient Buffer Allocation Algorithm (비동기식 선형 파이프라인의 성능 특성 및 이를 이용한 효율적 버퍼 할당 알고리즘)

  • 이정근;김의석;이동익
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.109-112
    • /
    • 2002
  • This paper presents relationship between the dynamic behavior of an asynchronous linear pipeline (ALP) and the performance of the ALP as buffers are allocated. Then the relationship is used in order to characterize a local optimum situation on the buffer design space of the ALP. Using the characterization we propose an efficient algorithm optimizing buffer allocation on an ALP in order to achieve its average case performance. Without the loss of optimality, our algorithm works in linear time complexity so it achieves fast buffer-configuration optimization. This paper makes two contributions. First, it describes relationship between the performance characteristics of an ALP and a local optimum on the buffer design space of the ALP. Second, it devises a buffer allocation algorithm finding an optimum solution in linear time complexity.

  • PDF