• 제목/요약/키워드: Linear Space Algorithm

검색결과 326건 처리시간 0.021초

대형 Sparse 선형시스템 방정식을 풀기위한 효과적인 병렬 알고리즘 (An Efficient Parallel Algorithm for Solving Large Sparse Linear Systems of Equations)

  • 채주환;이진
    • 한국통신학회논문지
    • /
    • 제14권4호
    • /
    • pp.388-397
    • /
    • 1989
  • 본 논문에서는 불규칙하게 분포된 non-zero 원소를 가진 대형 space 행렬로서 표시되는 선형시스템의 해를 능률적으로 얻기 위한 반복 병렬 알고리즘에 대하여 기술하고, 이 알고리즘을 수행하는데 적절한 컴퓨터로서 dataflow컴퓨터 구조를 제안하였다. 이 알고리즘에서는 Jacobi 반복법을 사용하였으며 행렬의 내적을 구하는데 소요되는 시간을 단축함으로서 병렬 수행시간을 단축시켰다.

  • PDF

영상 분할을 위한 퍼지 커널 K-nearest neighbor 알고리즘 (Fuzzy Kernel K-Nearest Neighbor Algorithm for Image Segmentation)

  • 최병인;이정훈
    • 한국지능시스템학회논문지
    • /
    • 제15권7호
    • /
    • pp.828-833
    • /
    • 2005
  • 커널 기법은 데이터를 high dimension 상의 속성 공간으로 mapping함으로써 복잡한 분포를 가지는 데이터에 대하여 기존의 선형 분류 알고리즘들의 성능을 향상시킬 수 있다r4]. 본 논문에서는 기존의 유클리디안 거리측정방법 대신에 커널 함수에 의한 속성 공간의 거리측정방법을 fuzzy K-nearest neighbor(fuzzy K-NN) 알고리즘에 적용한 fuzzy kernel K-nearest neighbor(fuzzy kernel K-NN) 알고리즘을 제안한다. 제시한 알고리즘은 데이터에 대한 적절한 커널 함수의 선택으로 기존 알고리즘의 성능을 향상시킬 수 있다. 제시한 알고리즘의 타당성을 보이기 위하여 여러 데이터 집합에 대한 실험결과와 실제 영상의 분할 결과를 보일 것이다.

General Linearly Constrained Broadband Adaptive Arrays in the Eigenvector Space

  • Chang, Byong Kun
    • Journal of information and communication convergence engineering
    • /
    • 제15권2호
    • /
    • pp.73-78
    • /
    • 2017
  • A general linearly constrained broadband adaptive array is examined in the eigenvector space with respect to the optimal weight vector and the adaptive algorithm. The optimal weight vector and the general adaptive algorithm in the eigenvector space are obtained by eigenvector matrix transformation. Their operations are shown to be the same as in the standard coordinate system except for the relevant transformed vectors and matrices. The nulling performance of the general linearly constrained broadband adaptive array depends on the gain factor such that the constraint plane is shifted perpendicularly to the origin by an increase in the gain factor. The general linearly constrained broadband adaptive array is observed to perform better than a conventional linearly constrained adaptive array in a coherent signal environment, while the former performs similarly to the latter in a non-coherent signal environment.

입력 공간의 변환을 이용한 새로운 방식의 퍼지 모델링-KL 변환 방식 (A transformed input-domain approach to fuzzy modeling-KL transform approch)

  • 김은태;박민기;이수영;박민용
    • 전자공학회논문지S
    • /
    • 제35S권4호
    • /
    • pp.58-66
    • /
    • 1998
  • In many situations, it is very important to identify a certain unkown system, it from its input-output data. For this purpose, several system modeling algorithms have been suggested heretofore, and studies regarding the fuzzy modeling based on its nonlinearity get underway as well. Generatlly, fuzzy models have the capability of dividing input space into several subspaces, compared to linear ones. But hitherto subggested fuzzy modeling algorithms do not take into consideration the correlations between components of sample input data and address them independently of each other, which results in ineffective partition of input space. Therefore, to solve this problem, this letter proposes a new fuzzy modeling algorithm which partitions the input space more efficiently that conventional methods by taking into consideration correlations between components of sample data. As a way to use correlation and divide the input space, the method of principal component is ued. Finally, the results of computer simulation are given to demonstrate the validity of this algorithm.

  • PDF

Construction Algorithm of Grassmann Space Parameters in Linear Output Feedback Systems

  • Kim Su-Woon
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권3호
    • /
    • pp.430-443
    • /
    • 2005
  • A general construction algorithm of the Grassmann space parameters in linear systems - so-called, the Plucker matrix, 'L' in m-input, p-output, n-th order static output feedback systems and the Plucker matrix, $'L^{aug}'$ in augmented (m+d)-input, (p+d)-output, (n+d)-th order static output feedback systems - is presented for numerical checking of necessary conditions of complete static and complete minimum d-th order dynamic output feedback pole-assignments, respectively, and also for discernment of deterministic computation condition of their pole-assignable real solutions. Through the construction of L, it is shown that certain generically pole-assignable strictly proper mp > n system is actually none pole-assignable over any (real and complex) output feedbacks, by intrinsic rank deficiency of some submatrix of L. And it is also concretely illustrated that this none pole-assignable mp > n system by static output feedback can be arbitrary pole-assignable system via minimum d-th order dynamic output feedback, which is constructed by deterministic computation under full­rank of some submatrix of $L^{aug}$.

모양공간 모델을 이용한 영상분할 알고리즘 (An Image Segmentation Algorithm using the Shape Space Model)

  • 김대희;안충현;호요성
    • 대한전자공학회논문지SP
    • /
    • 제41권2호
    • /
    • pp.41-50
    • /
    • 2004
  • MPEG-4 표준에서는 객체 단위의 부호화를 수행하기 위해 자연영상으로부터 비디오 객체를 분리하는 영상분할(segmentation) 기술이 필요하다. 영상분할 방법은 크게 자동 영상분할(automatic segmentation)과 반자동 영상분할(semi-automatic segmentation)의 두 부류로 나눌 수 있다. 지금까지 개발된 대부분의 자동 영상분할 방법은 비디오 객체의 명확한 수학적인 모델을 제시하기 곤란하며 한 화면에서 개별 객체를 추출하기 어렵기 때문에 그 성능에 한계가 있다. 본 논문에서는 이러한 문제점을 극복하기 위해 active contour 알고리즘을 이용한 반자동 영상분할 알고리즘을 제안한다. 초기 곡선으로부터 변화 가능한 모든 곡선의 집합을 모양공간으로 정의하고 그 공간을 선형공간이라고 가정하면, 모양공간(shape space)은 모양 행렬에 의해 행(column) 공간과 남은 빈(left null) 공간으로 나뉘어진다. 본 논문에서 제안하는 알고리즘은 행공간의 모양공간 벡터를 이용하여 초기 곡선으로부터 영상의 특징점까지의 변화를 기술하고 동적 그래프 검색 알고리즘을 이용하여 객체의 세밀한 부분을 묘사한다. 모양 행렬과 객체의 윤곽을 추정하기 위한 SUSAN 연산자의 사용으로 제안한 알고리즘은 저수준 영상처리로부터 생성되는 불필요한 특징점을 무시할 수 있다. 또한, 모양 행렬의 사용으로 생긴 제약은 동적 그래프 검색 알고리즘으로 보상한다.

칼만 필터 알고리즘을 이용한 유비쿼터스 센서 기반 임베디드 로봇시스템의 온라인 동적 모델링 (Online Dynamic Modeling of Ubiquitous Sensor based Embedded Robot Systems using Kalman Filter Algorithm)

  • 조현철;이진우;이영진;이권순
    • 제어로봇시스템학회논문지
    • /
    • 제14권8호
    • /
    • pp.779-784
    • /
    • 2008
  • This paper presents Kalman filter based system modeling algorithm for autonomous robot systems. State of the robot system is measured using embedded sensor systems and then carried to a host computer via ubiquitous sensor network (USN). We settle a linear state-space motion equation for unknown robot system dynamics and modify a popular Kalman filter algorithm in deriving suitable parameter estimation mechanism. To represent time-delay nature due to network media in system modeling, we construct an augmented state-space model which is mainly composed of original state and estimated parameter vectors. We conduct real-time experiment to test our proposed estimation algorithm where speed state of the constructed robot is used as system observation.

Non-spillover control design of tall buildings in modal space

  • Fang, J.Q.;Li, Q.S.;Liu, D.K.
    • Wind and Structures
    • /
    • 제2권3호
    • /
    • pp.189-200
    • /
    • 1999
  • In this paper, a new algorithm for active control design of structures is proposed and investigated. The algorithm preserves the decoupling property of the modal vibration equation and eliminates the spillover problem, which is the main shortcoming in the independent modal space control(IMSC) algorithm. With linear quadratic regulator(LQR) control law, the analytical solution of algebraic Riccati equation and the optimal actuator control force are obtained, and the control design procedure is significantly simplified. A numerical example for the control design of a tall building subjected to wind loads demonstrates the effectiveness of the proposed algorithm in reducing the acceleration and displacement responses of tall buildings under wind actions.

단기수요예측 알고리즘 (An Algorithm of Short-Term Load Forecasting)

  • 송경빈;하성관
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권10호
    • /
    • pp.529-535
    • /
    • 2004
  • Load forecasting is essential in the electricity market for the participants to manage the market efficiently and stably. A wide variety of techniques/algorithms for load forecasting has been reported in many literatures. These techniques are as follows: multiple linear regression, stochastic time series, general exponential smoothing, state space and Kalman filter, knowledge-based expert system approach (fuzzy method and artificial neural network). These techniques have improved the accuracy of the load forecasting. In recent 10 years, many researchers have focused on artificial neural network and fuzzy method for the load forecasting. In this paper, we propose an algorithm of a hybrid load forecasting method using fuzzy linear regression and general exponential smoothing and considering the sensitivities of the temperature. In order to consider the lower load of weekends and Monday than weekdays, fuzzy linear regression method is proposed. The temperature sensitivity is used to improve the accuracy of the load forecasting through the relation of the daily load and temperature. And the normal load of weekdays is easily forecasted by general exponential smoothing method. Test results show that the proposed algorithm improves the accuracy of the load forecasting in 1996.

미지의 선형 시스템에 대한 실시감 회귀 모델링 (Real-time recursive identification of unknown linear systems)

  • 최수일;김병국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.548-553
    • /
    • 1992
  • In this paper and recursive version of orthogonal ARMA identification algorithm is proposed. The basic algorithm is based on Gram-Schmidt orthogonalization of automatically selected basis functions from specified function space, but does not require explicit creation of orthogonal functions. By using two dimensional autocorrelations and crosscorrelations of input and output with constant data length, identification algorithm is extended to cope slowly time-varying or order-varying delayed system.

  • PDF