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An Efficient Parallel Algorithm for Solving Large

Sparse Linear Systems of Equations
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This paper describes an intelligent iterative parallel algorithm for solving large sparse linear systems

of equations, and proposes a static dataflow computer architechture for the implementation of the algorithm. Impleme-
nted with the Jacobi iterative method, the intelligent algorithm reduces the parallel execution time by reducing the

individual inner product operation time.

I. Introduction

Fast and efficient computer architectures
are in high demand in many real-time appli-
cation areas such as military research, medical
research, and computer simulation. In order
to satisfy the demand, parallel processing
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architecture has emerged as an important
research field for computer professionals,
Various kinds of parallel processing architect-
ures have appeared in the past two decades
@8 The rapid advances in parallel processing
architecture have stimulated much research
aimed at developing parallel algorithms,

In solving linear systems of equations, the
properties of linear systems determine what
algorithm is appropriate for the problem. Many
parallel algorithms have been developed for
well structured cases such as banded matrices,
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and symmetric matrices 7%, But, unstructured
and sparse matrices are often found in network
analysis and power system analysis. "™,

Without concerning the structure of matrices,
the problem to solve large sparse linear systems
of equations with diagonal dominant matrices
1s considered in this paper. In solving the
problem, direct methods and iterative methods
can be used. In general, iterative methods
make more efficient use of memory space and
time when solving large linear systems than
direct methods ¥, Also, massive parallelism
can be detected in iterative methods and global
communicaton demands of iterative methods
are fewer than those of direct methods ¥, Of
iterative methods, Jacobi iterative method is
chosen for implementing an intelligent algori-
thm for solving the problem because the
characteristics of the Jacobi iterative method
1s inherently parallel.

II. Jacobi Iterative Method

A linear system of equations can be expr-
essed as
Ax=Db, (1)
where A is a known nXn matrix, x 1s a
unknown nXx1 vector, and b is a known nx1
vector, The matrix A can be splitted into
D-L-U, where D is the principal diagonal part,
L is the strictly lower triangular, and U is the
strictly upper triangular, Here, D, L, and U

are nXn matrices. Eq. (1) can be transformed
into

(D-L-U)x=b
x=D"L+U)x+D7b
=Tx+c, (2)

where, T=D"(L+4+U) and ¢c=D"b,

When the matrix T and the vector ¢ are
partitioned into m blocks horizontally, the ite-
rative method can be expressed as follows,
Here, a norm, | |-| | is used for testing for the
convergence,

Begin
k=0
while k{maximum - number -of - iterations

do
for all 1=i =m do

xF=T, "x*" +¢
end for all
if  [xk—x%7V| {tolerance then terminate
else x* P=xk; k=k+1
end while
End
Two procedures, a computation procedure
and a control procedure, are needed to realiz

e the method, Main program reads the input

data, initiates the procedures, and outputs the

result, The computation procedure has the

following functions:

% Calculate the inner product of the submatrix
T with the vector x*!,

% Add the result of the inner product with
ci to obtain x,k,

% Send x/* to the control procedure,

The control procedure has the following
functions:

% Send initial values x© if it is the first time,
otherwise send the updated values, x%?
to the compution procedure.

% Collect the updated values, x* from the
computation procedure, and test for conv-
ergence. If convergence exists or the upd-
ated number of iteration exceeds the
maximum limit, send this information to
the main program and to the computation
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procedure so that the execution is termin
ated.

. Intelligent lterative Parallel Algorithm

Massive parallelism can be detected in the
inner product operation of Jacobi iterative
method. Data granularity is the main point
of view in the intelligent iterative parallel
algorithm (is called the intelligent algorithm
in the followings). The given matrix and
vector, T and b can be divided into units of

various sizes,

1) Data granularity

% Large-grain implementation: the basic unit
in the large-grain implementation is a
submatix. The matrix T is partitioned into
several submatrices horizontally, Each pro-
cessor calculates the inner product of a
submatrix, T, of T with x*7 and adds
the result and the corresponding known
subvector, ¢; of ¢ in order to obtain x,
xk is obtained by collecting all subvectors
from each processor. ‘

¥ Medium -grain implementation: Each row
of the matrix, (T)is a basic unit of the
medium-grain implementation Each proce-
ssor exetutes the inner product of a row
vector of T with x*™, and adds the result
to the corresponding element of the known
vector{c)to obtain an element of x® xk 1s
obtained by collecting all elements from
each processor.

X% Fine-grain implementation: The basic unit
of the fine-grain implementation is a scalar
operation such as an addition operation or
a multiplication operation. Each vector
operation is partitioned into many scalar
operations,
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¥ Proposed implementaion: The fine-grain
implementation exploits massive parallelism,
but communication delays may be serious
to do vector operations. The large-grain
or the medium - grain implementation cannot
detect massive parallelism comparing to the
fine-grain implementation, but they do not
require high communicationdemand among
processors for vector operations. The inte-
lligent algorithm determines the data gra-
nularity of each row according to the given
conditions (number of the nonzero elements
in the row, communication delay, and sta-
rt-up time of pipelined processors). In other
words, the intelligent algorithm divide a
row vector into one or more subvectors, or
scalars depending on the given conditions.
Therefore, the proposed implementation (ru-
lebased method) is between the fine-grain
implementation and the medium-grain
implementation.

2) Procedure

The procedure of the intelligent parallel
algorithm consists of a broadcast phase which
send global data to each processor, a compute
phase, an aggregate phase which collect local
data into one global data, and a test phase
for global convergence (Fig. 1).

The main idea of the algorithm is to find
optimal data granularity for the inner product
operation under the following assumptions:

(1) The execution times (te) of a scalar
operation such as addition and multiplication
are same,

(2) The speeds of stages in a pipeline are
equal,

(3) The clock period of the inner product pipeline
which is consists of a multiplication part and

. an addition part is 2(te /ks), where ks denotes
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1

make the decison table
¥
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execute the operation packets by
the slave processors
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test tor global convergence
by the main processor
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Fig. 1. Flow-chart of the intelligent algorithm

the number of stages fo the pipeline,
Vector operations can be processed on
a pipeline processor or many scalar processors
in parallel. When pipelining is applied to vector
processing, set-up time (time taken to structure
the pipeline and prepare the streams of vector
operands) and flush time (time to empty the
pipeline at the conclusion of the operations and
set the termination condition) are required.
Here, the overhead time is called start-up time.

If a vector operation with length p is executed
on a pipeline with ks stages and the clock
period of the pipeline is t, the execution time
required is (p+ks—1) t". When pipelined
processors are used for implementing the
medium-grain approach (temporal method),
the execution time of the inner product on
a pipelined processor (tpp) is obtained by

tpp=start-up time+(p+ks—1) 2te/ ks, (3)

where p denotes the vector length,

For implementation of the fine-grain appr-
oach, many scalar processors are simultaneously
used to do inner product (spatial method). In
this case, after each processor finishes its
operation, the result is sent to another processor
to do next operation, Therefore, communication
time is an important factor in counting parallel
execution time, Assuming that all scalar pro-
cessors execute binary operations, the parallel
execution of the spatial method to do an inner
product operation of vector a and b with len-
gth, p is shown in Fig. 2.

Therefore, the execution time of the fine-
grain approach (tsp) is obtained by

t=( [log, p)to+ ( [log, p1+ 1) te, (4)

where, to denotes the communication time.

Depending on the given conditions, the alg-
orithm chooses the temporal method, spatial
method, or rule-based method by calculating
the execution times required. The intelligent
algorithm creates a decision table for given
range of the row vectors of the matrix T to
reduce the time that decides the optimal length
of each row vector for each iteration. The dec-
ision table is used for a rule base.
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Fig. 2. Inner product operation of vector a and b

The procedure to make the decision table
is shown in the followings:

for p=minimum-length to maximum-length do
for k=1 to [ log, p] do

expand-binary - tree:

calculate - parallel - execution -time

choose -best - case.

end for k

end for p

The expand-binary -tree routine expands the
binary tree by splitting a row vector until it
cannot be divided by the following algorithm:

if (p% mod 2) is 0 then p**®=p* /2:

pkY,=p% /2
else p(kﬂ)lzp(k) / 2‘
p(k+n2= (ki/2‘+__1v

where k is the number of iteration,

The calculate- parallel- execution - time routine
calculates the parallel execution times for all
cases made by the expand - binary-tree routine
using Eq. (3), Eq. (4), or both equations. The
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choose-best-case routine compares the execu-
tion times and chooses the best case.

The intellignet algorithm decides the data
granularity based on the decision table, Acc-
ording to the decision table, if it is more eff-
icient to use a row vector with whole length,
the algorithm do not divide the row vector
and make a vector operation packet, If it is
more efficient to divide the row vector into
individual scalar elements, the algorithm makes
many scalar operation packefs. If it 1s best to
divide a row vector into several subvectors,
the algorithm divides the row vector into several
subvectors and makes several vector operaion

packets and several scalar operation packets.

V. Evaluation

The parameters in evaluation are the order
(size) of sparse matrices, sparse factor (rate
of nonzero elements for all elements), start-up
time of the pipelined processor, and commun -
ication delay of packet communication network,

The parameters are given at the testing
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time. A random number generator of IMSL
is used to make sparse matrices for simulation
according to the given sparse factor,

The intelligent algorithm (rule-based method)
is compared to the medium-grain implement-
ation (temporal method) and the fine-grain
implementation (spatial method) by simulation.
The sizes of sparse matrices varies from 300
X300 to 2100X 2100 with the interval, 200 and
it is assumed that the number of stages of
the inner product pipeline is 8.

1) Execution time

The execution time of inner product opera-
tions for an iteration, which was simulated
sequentially, is shown in Fig. 3 and Fig. 4.
When the start-up time becomes large, the
execution time of the rule-based method
approaches .that of the temporal method.
Conversely, if the communcation delay becomes
large, the execution time of the rule-based
method approaches to that of the spatial
method. However, the rule-based method is
the best in the execution time,
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Fig. 3. Execution time on the conditions; sparsity factor=
0.01, to/ te= 0.0, and start-up time=0.0

When the number of processors is unlimited,
the parallel execution time simulated is shown
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Fig. 4. Execution time on the conditions; sparsity factor=
0.01, to/ te==1.0, and start-up time=4.0
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Fig. 5. Parallel execution time on the conditions: sparsity
factor=0.01, to / te=0.0, and start-up time=00 when
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the number of processors i1s unlimited
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in Fig. 5 and Fig. 6. The parallel execution
time is decided by the execution time of the
row with the maximum number of nonzero
elements for the temporal method and the
spatial method. But this phenomenon does not
occur in the rule-based method, since the row
vector may be divided into several subvectors.
Therefore, the parallel .execution time of the
rule-based method is less or equal to those
of the other methods.

2) Speed-up rate

The speed-up rate is defined as sp=tsea / tp
ar, Where tseq and tpar denote sequential exe-
cution time and parallel execution time, resp-
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Fig. 7. Speed-up rate on the conditions: sparsity factor=
0.01. to/ te=0.0, and start-up time==(.0
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Fig. 8. Speed-up rate on the conditions: sparsity factor=
.01, to/ te=1.0, and start-up time=4)
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ectively, The speed-up rate is shown in Fig,
7 and Fig. 8. From this evaluation, the rule-
base method becomes more advantageous as
sparse matricxes become larger.

V. Proposed Computer Architecture

The intellignet iterative algorithm exploits
massive parallelism in the inner product ope-
ration and requires scalar operations and vector
operations. Therefore, heterogeneous operation
and asynchronous operation are critical factors
in choosing the proper architecture for the
implementation of the massive paralellism,

Of many parallel computer architectures,
dataflow computer architectures have the
capability not only to suport massive parallelism
exploited but to execute operation packets
asynchronously. Dataflow computer architectures
are based on asynchrony and functionality to
do parallel operation. Asynchrony results from
the execution mechanism in which an operation
is executable when all input data tokens of
execution graph have arrived. In other words,
the conventional parallel architectures are based
on the ordered execution of instructions with
control flow while dataflow computer archite-
ctures are based on the availability of the
operands without any control flow, Function-
ality results from the mechanism that permits
any two enabled operations to be executed
concurrently without side-effects, as the

mechanism of functions,
Dataflow computer architectures are classified

as static architectures and dynamic architect-
ures. In static architectures, instructions are
loaded into memory before the computation
begins and each instruction is executed once
immediately after its operands have arived.
In dynamic architecture, an instruction can
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be executed several times because each inst-
ruction Is created at running time by tagging.
Therefore, additional hardware is required to
attach and to match tags of reentry.

The directed graph from the Jacobi iterative
method can be acyclic for an iteration. Ther-
efore, each operation can have a unique address

which is assigned by the compiler. This causes
that only one operator exists on an input link
of the dataflow graph. Hence, static dataflow
computer architectures are suitable to implem-
ent the intelligent algorithm,

In static dataflow computer architectures,
a number of processores are conected through

Global bit Scalar Processors
Memory ]
5 Buffer I— ——
3«
Control
Processor
Buffer
1+ - T
Buffer
[ J=
< - Control
Main Processor ffer | Processor
° — _
Network | Network 1
Buffer
E___J':
- - Control
Buffer Processor
» S

Pipelined Processors

Fig. 9. System configuration
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a routing network. A dataflow program is
divided into individual instructions to be dist-
ributed over the processors. The instructions
are stored in the memory sections of processors,
Each instruction becomes executable when its
operands arrive, Each processors executes the
executable instructions and sends the result
to the designated next processor through the
routing network,

The intellingent alogorithm creates scalar
operation packets and vector operation packets.
Therefore, the pipelined vector processor pool
and the scalar processor pool are needed to
do  heterogeneous operations as shown in
Fig. 9. Main processor and control processors
executes the control procedure, Slave processors
in the processor pool accomplish the compu-
tation procedure. The configuration shown in
Fig. 9 is proposed to distribute the burden of
the main processor to the control processors
and to improve the utilization of slave proce-
ssors. The intelligent algorithm requires syn-
chronization after an iteration for testing for
global convergence. In order to reduce the time
required for the rendezvous operation, buffers
are used between a sending processor and a
receiving processor

Control processors test for local convergence
and send the result to the main processor, The
result in information is whether it is converged
or not, Therefore, it i1s desirable to use a global
bit memory in order to reduce the packet com-
munication time between the control processors
and and the main processor.

VI. Conclusion

The exploitation of parallelism occupies a
key position in parallel procesing systems, The
other important factor to be considered in
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parallel processing systems is communication
delay. The intelligent algorithm is a method
to optimize two factors based on the given
conditions in order to reduce parallel execution
time and the proposed computer architecture
i1s a proper parallel computer architecture in
solving linear systems of equations, The idea
can be extended to solve nonlinear systems
of equations,
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