• Title/Summary/Keyword: Linear Regression Function

Search Result 506, Processing Time 0.022 seconds

Distribution of the Estimator for Peak of a Regression Function Using the Concomitants of Extreme Oder Statistics

  • Kim, S.H;Kim, T.S.
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.3
    • /
    • pp.855-868
    • /
    • 1998
  • For a random sample of size n from general linear model, $Y_i= heta(X_i)+varepsilon_i,;let Y_{in}$ denote the ith oder statistics of the Y sample values. The X-value associated with $Y_{in}$ is denoted by $X_{[in]}$ and is called the concomitant of ith order statistics. The estimator of the location of a maximum of a regression function, $ heta$($\chi$), was proposed by (equation omitted) and was found the convergence rate of it under certain weak assumptions on $ heta$. We will discuss the asymptotic distributions of both $ heta(X_{〔n-r+1〕}$) and (equation omitted) when r is fixed as nolongrightarrow$\infty$(i.e. extreme case) on the basis of the theorem of the concomitants of order statistics. And the will investigate the asymptotic behavior of Max{$\theta$( $X_{〔n-r+1:n〕/}$ ), . , $\theta$( $X_{〔n:n〕}$)}as an estimator for the peak of a regression function.

  • PDF

QUASI-LIKELIHOOD REGRESSION FOR VARYING COEFFICIENT MODELS WITH LONGITUDINAL DATA

  • Kim, Choong-Rak;Jeong, Mee-Seon;Kim, Woo-Chul;Park, Byeong-U.
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.4
    • /
    • pp.367-379
    • /
    • 2004
  • This article deals with the nonparametric analysis of longitudinal data when there exist possible correlations among repeated measurements for a given subject. We consider a quasi-likelihood regression model where a transformation of the regression function through a link function is linear in time-varying coefficients. We investigate the local polynomial approach to estimate the time-varying coefficients, and derive the asymptotic distribution of the estimators in this quasi-likelihood context. A real data set is analyzed as an illustrative example.

Sparse Kernel Regression using IRWLS Procedure

  • Park, Hye-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.3
    • /
    • pp.735-744
    • /
    • 2007
  • Support vector machine(SVM) is capable of providing a more complete description of the linear and nonlinear relationships among random variables. In this paper we propose a sparse kernel regression(SKR) to overcome a weak point of SVM, which is, the steep growth of the number of support vectors with increasing the number of training data. The iterative reweighted least squares(IRWLS) procedure is used to solve the optimal problem of SKR with a Laplacian prior. Furthermore, the generalized cross validation(GCV) function is introduced to select the hyper-parameters which affect the performance of SKR. Experimental results are then presented which illustrate the performance of the proposed procedure.

  • PDF

Analysis of Temperature Effects on Microbial Growth Parameters and Estimation of Food Shelf Life with Confidence Band

  • Park, Jin-Pyo;Lee, Dong-Sun
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.2
    • /
    • pp.104-111
    • /
    • 2008
  • As a way to account for the variability of the primary model parameters in the secondary modeling of microbial growth, three different regression approaches were compared in determining the confidence interval of the temperature-dependent primary model parameters and the estimated microbial growth during storage: bootstrapped regression with all the individual primary model parameter values; bootstrapped regression with average values at each temperature; and simple regression with regression lines of 2.5% and 97.5% percentile values. Temperature dependences of converted parameters (log $q_o$, ${\mu}_{max}^{1/2}$, log $N_{max}$) of hypothetical initial physiological state, maximum specific growth rate, and maximum cell density in Baranyi's model were subjected to the regression by quadratic, linear, and linear function, respectively. With an advantage of extracting the primary model parameters instantaneously at any temperature by using mathematical functions, regression lines of 2.5% and 97.5% percentile values were capable of accounting for variation in experimental data of microbial growth under constant and fluctuating temperature conditions.

Association of heavy metal complex exposure and neurobehavioral function of children

  • Minkeun Kim;Chulyong Park;Joon Sakong;Shinhee Ye;So young Son;Kiook Baek
    • Annals of Occupational and Environmental Medicine
    • /
    • v.35
    • /
    • pp.23.1-23.14
    • /
    • 2023
  • Background: Exposure to heavy metals is a public health concern worldwide. Previous studies on the association between heavy metal exposure and neurobehavioral functions in children have focused on single exposures and clinical manifestations. However, the present study evaluated the effects of heavy metal complex exposure on subclinical neurobehavioral function using a Korean Computerized Neurobehavior Test (KCNT). Methods: Urinary mercury, lead, cadmium analyses as well as symbol digit substitution (SDS) and choice reaction time (CRT) tests of the KCNT were conducted in children aged between 10 and 12 years. Reaction time and urinary heavy metal levels were analyzed using partial correlation, linear regression, Bayesian kernel machine regression (BKMR), the weighted quantile sum (WQS) regression and quantile G-computation analysis. Results: Participants of 203 SDS tests and 198 CRT tests were analyzed, excluding poor cooperation and inappropriate urine sample. Partial correlation analysis revealed no association between neurobehavioral function and exposure to individual heavy metals. The result of multiple linear regression shows significant positive association between urinary lead, mercury, and CRT. BMKR, WQS regression and quantile G-computation analysis showed a statistically significant positive association between complex urinary heavy metal concentrations, especially lead and mercury, and reaction time. Conclusions: Assuming complex exposures, urinary heavy metal concentrations showed a statistically significant positive association with CRT. These results suggest that heavy metal complex exposure during childhood should be evaluated and managed strictly.

Estimation of the number of discontinuity points based on likelihood (가능도함수를 이용한 불연속점 수의 추정)

  • Huh, Jib
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.1
    • /
    • pp.51-59
    • /
    • 2010
  • In the case that the regression function has a discontinuity point in generalized linear model, Huh (2009) estimated the location and jump size using the log-likelihood weighted the one-sided kernel function. In this paper, we consider estimation of the unknown number of the discontinuity points in the regression function. The proposed algorithm is based on testing of the existence of a discontinuity point coming from the asymptotic distribution of the estimated jump size described in Huh (2009). The finite sample performance is illustrated by simulated example.

A Study on a One-step Pairwise GM-estimator in Linear Models

  • Song, Moon-Sup;Kim, Jin-Ho
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.1
    • /
    • pp.1-22
    • /
    • 1997
  • In the linear regression model $y_{i}$ = .alpha. $x_{i}$ $^{T}$ .beta. + .epsilon.$_{i}$ , i = 1,2,...,n, the weighted pairwise absolute deviation (WPAD) estimator was defined by minimizing the dispersion function D (.beta.) = .sum..sum.$_{{i $w_{{ij}}$$\mid$ $r_{j}$ (.beta.) $r_{i}$ (.beta.)$\mid$, where $r_{i}$ (.beta.)'s are residuals and $w_{{ij}}$'s are weights. This estimator can achive bounded total influence with positive breakdown by choice of weights $w_{{ij}}$. In this paper, we consider a more general type of dispersion function than that of D(.beta.) and propose a pairwise GM-estimator based on the dispersion function. Under some regularity conditions, the proposed estimator has a bounded influence function, a high breakdown point, and asymptotically a normal distribution. Results of a small-sample Monte Carlo study are also presented. presented.

  • PDF

Linear Measurement Error Variance Estimation based on the Complex Sample Survey Data

  • Heo, Sunyeong;Chang, Duk-Joon
    • Journal of Integrative Natural Science
    • /
    • v.5 no.3
    • /
    • pp.157-162
    • /
    • 2012
  • Measurement error is one of main source of error in survey. It is generally defined as the difference between an observed value and an underlying true value. An observed value with error may be expressed as a function of the true value plus error term. In some cases, the measurement error variance may be also a function of the unknown true value. The error variance function can be rewritten as a function of true value multiplied by a scale factor. This research explore methods for estimation of the measurement error variance based on the data from complex sampling design. We consider the case in which the variance of mesurement error is a linear function of unknown true value, and the error variance scale factor is small. We applied our results to the U.S. Third National Health and Nutrition Examination Survey (the U.S. NHANES III) data for empirical analyses, which has replicate measurements for relatively small subset of initial respondents's group.

FUZZY POLYNOMIAL REGRESSION ANALYSIS USING SHAPE PRESERVING IOERATION

  • Hong, Dug-Hun;Do, Hae-Young
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.3
    • /
    • pp.869-880
    • /
    • 2001
  • In this paper, we describe a method for fuzzy polynomial regression analysis for fuzzy input-output data using shape preserving operations based on Tanaka’s approach. Shape preserving operations simplifies the computation of fuzzy arithmetic operations. We derive the solution using general linear program.

Patch based Semi-supervised Linear Regression for Face Recognition

  • Ding, Yuhua;Liu, Fan;Rui, Ting;Tang, Zhenmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.3962-3980
    • /
    • 2019
  • To deal with single sample face recognition, this paper presents a patch based semi-supervised linear regression (PSLR) algorithm, which draws facial variation information from unlabeled samples. Each facial image is divided into overlapped patches, and a regression model with mapping matrix will be constructed on each patch. Then, we adjust these matrices by mapping unlabeled patches to $[1,1,{\cdots},1]^T$. The solutions of all the mapping matrices are integrated into an overall objective function, which uses ${\ell}_{2,1}$-norm minimization constraints to improve discrimination ability of mapping matrices and reduce the impact of noise. After mapping matrices are computed, we adopt majority-voting strategy to classify the probe samples. To further learn the discrimination information between probe samples and obtain more robust mapping matrices, we also propose a multistage PSLR (MPSLR) algorithm, which iteratively updates the training dataset by adding those reliably labeled probe samples into it. The effectiveness of our approaches is evaluated using three public facial databases. Experimental results prove that our approaches are robust to illumination, expression and occlusion.