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Sparse Kernel Regression using IRWLS Procedure

Hyejung Parkl)

Support vector machine(SVM) is capable of providing a more complete
description of the linear and nonlinear relationships among random
variables. In this paper we propose a sparse kernel regression(SKR) to
overcome a weak point of SVM, which is, the steep growth of the
number of support vectors with increasing the number of training data.
The iterative reweighted least squares(IRWLS) procedure is used to solve
the optimal problem of SKR with a Laplacian prior. Furthermore, the
generalized cross validation(GCV) function is introduced to select the
hyper—-parameters which affect the performance of SKR. Experimental
results are then presented which illustrate the performance of the
proposed procedure.
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1. Introduction

SVM, firstly developed by Vapnik(1995, 1998), is being used as a new technique
for regression and classification problems. SVM is based on the structural risk
minimization(SRM) principle, which has been shown to be superior to the
traditional empirical risk minimization(ERM) principle. SRM minimizes an upper
bound on the expected risk unlike ERM minimizing the error on the training data.
By minimizing this bound, high generalization performance can be achieved. In
particular, for the SVM regression case SRM results in the regularized ERM with
the e-insensitive loss function. The introductions and overviews of recent

developments of SVM can he found in Vapnik(1995,1998), Smola and Scho
Ikopf(1998), and Wang(2005). Training an SVM requires the solution to a quadratic

programming (QP) optimization problem. But QP problem presents some inherent
limitations which result in computational difficulty especially for the large data
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sets. Platt(1998) developed the sequential minimal optimization(SMQ) algorithm
which divides the QP problem into a series of small QP problems to avoid such
computational difficulty. Perez-Cruz et al.(2000) proposed IRWLS algorithm for
SVM by transforming the Lagrangian function into sum of quadratic terms by
defining associated weights of predicted errors.

Sparsity is known as an important feature of kernel regression models, which
provides the efficiency on predicting the regression function. SVM does not
provide extreme sparsity and the number of support vectors depends on the
number of training data. Tipping(2001) proposed a Bayesian approach referred to
as the relevance vector machine(RVM) providing more sparsity. However RVM
has computational problems since there are no closed-form solutions for
maximizing the marginal likelihood.

In this paper we propose a SKR wusing IRWLS procedure to obtain
simultaneously the accuracy and the sparsity. Also the proposed SKR enables to
select appropriate  hyper-parameters easily from the generalized cross
validation(GCV) function, which is used to select hyper—parameters for the
achievement of high generalization performance. The rest of this paper is
organized as follows. In Section 2 we give brief reviews of SVM and RVM for
regression. In Section 3 we propose a SKR using IRWLS procedure and present
the model selection method using GCV function. In Section 4 we perform the
numerical studies through examples. In Section 5 we give the conclusions.

2. Kernel Regressions
2.1 Support Vector Machine

Let the training data set denoted by (Ii, y; )’ , with each input z, € R?
including a constant 1 and the response y; © R, where the output variable y; is
related to the input vector =, Here the feature mapping function
6(+): R* > R 4 maps the input space to the higher dimensional feature space
where the dimension d; is defined in an implicit way. An inner product in feature
space has an equivalent kernel function in input space, ¢(z;)'¢(z;)= K(z,z;)
(Mercer, 1909). We consider the nonlinear regression case, in which the regression
function of the response given z, pu(z), can be regarded as a nonlinear function of

input vector = .
With e-insensitive loss function p,( - ), the estimator of the regression function

can be defined as any solution to the optimization problem,

1, <
min 5’[0 wt+ C Epe(yi_ﬂ(xi))a (1>
=1

where p.(r)=0 if Irl<e and p.(r)=r—e if |r|>e. We can express the
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regression problem by formulation for SVR as follows.

min %w/w—i—C’ En](fi-i—fj) )
i=1
subject to
y—wolr,) < e+¢; 3
qu( Dy = e+E, 6,8 =

where C'is a regularization parameter penalizing the training errors.
We construct a Lagrange function from (2) and (3) as follows:

L= guwt Y6 +E) - En]%(eJrfi—yﬂrw/ﬂﬁ(ﬂ?i)) )

=1

—Nal(e+E +y—wols = Y (g +n&)

=1 =1
We notice that the positivity constraints ozi,oz: 11 j = 0 should be satisfied. After
taking partial derivatives of equation (4) with regard to the primal variables
(w,€,€ ) and plugging them into equation (4), we have the optimization problem

below.

n n

1 * *
max—;E(ozi—ozi)(Oéj—Oéj)K(Iij)‘F_E04—04 '_eza"'o‘

Bi=1 i=1
with constraints

a;, 04: = [07 C]a
where the data points corresponding to positive values of «; or oz: are called
support vectors. Solving the above equation with the constraints determines the
optimal Lagrange multipliers, o;, oz: , the estimator of the regression function given

the input vector x are obtained as follows.

plz)= Y (o, —a; Kz ).

i=1

In the nonlinear case, w is no longer explicitly given. However, it is uniquely
defined in the weak sense by the dot products. Here the linear regression model
can be regarded as the special case of the nonlinear regression model by using
identity feature mapping function, that is, ¢(z)= 2 which implies the linear kernel
such that A(z,,z,) =z, z,.

2.2 Relevance Vector Machine.

Given the training data set (z, y;)/—, , with each input z; € R% and the
response y; © R, the distribution of ¥ given x is assumed to follow a normal

distribution, N(u(x), 6?), where the mean is modelled by n(x) as defined in
(1) for SVR. Then the likelihood of training data can be expressed as
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(vl a,0%) = (2m0?) ’”/zeXp<— # |ly—@a IIZ),
where a = (ay,-+,a,) and ©is a n<(n+1) design matrix consisted of 1 ,

and the kernel function K with K,;= K (Ii,il?j). The normal prior is imposed over

the weight vector a,

waw) =TI N0, 1/a),

with n+1 hyper-parameters a;'s.
Then posterior distribution over the weights is obtained by Bayes’ rule as follow,

p(a|y,a, 02): (27_[_0_2)*(714*1)/2'2'*1/2

)

1 o —
exp| 5o 151 o
where Y= (®' B&+ diagla))” ' ,u= Y& By, and B=1/o>.
By integrating out the weights «, the marginal likelihood for hyper—-parameters is
obtained as

plyla,o®)= 2m0®) "B~ + ¢ A~ |*1/26XP(_%!/<B’1+ M*lqﬁ’)’ly).

Relevance vector learning becomes to find the hyper—parameter posterior mode by
maximizing p(a, o’ y)ec p(yla, o®)pla)p(o?) with respect to a and ¢°. Since the
maximizing values of e and ¢ cannot be obtained in a closed form, the iterative
re—estimation procedure is used(MacKay, 1992).

With the optimal values of a, the estimator of the regression function given the
input vector = are obtained as follows.

pilz)= En:ai o(z.7).

i=1
3. Sparse Kernel Regression using IRWLS procedure

Let the training data set D be denoted by (z, y;)'—, , with each input

x, € R including a constant 1 and the response y; € R. For this data set, we
can consider the regression model

y, = plae,)+ ey i=1,2,-m,
where ¢; is assumed to be independently normally distributed with mean 0 and
variance o> and 1 is the regression function to be estimated.
The negative log likelihood of the given data set can be expressed as(constant
terms are omitted)

_ 1 ¥ 2

¢ (ple)= 5 i;(yi ).
The regression function is estimated by a linear model, u(z;) = w'¢(x;) conducted
in a high dimensional feature space, which can be rewritten as ulz;) =K, a |,
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where K; is the ¢ -th row of A and « is the vector of n weights to be
estimated. Then the maximum likelthood estimates of « are obtained by
minimizing the negative log—likelihood function,
= 3 3300

The maximum likelihood estimates of a generally lead severe overfitting, we are
encouraged to use a prior over « . Then the penalized maximum likelithood
estimates(the maximum a posteriori estimates) of @ are obtained by minimizing
the objective function,

Lla)= ¢ (a)+ logp(a),
where p(a) is some prior over «.
To have the sparsity on estimation of a , we use a Laplacian prior(Williams,
1995),

pla) o< exp(=Allall, ),

where lla |l;= Y]la;| denotes ¢, norm and A is a nonnegative constant.

The objective function can be rewritten as

Lia)= ¢ (a)+ Mall .
Here A controls the tradeoff between the goodness-of-fit on the data and llall;.
The objective function ZL(a) is not differentiable with respect to a , we need a
modification of ZL(a) for IRWLS procedure.

We define an objective function given a * as

L(a]a )—l(a)—f—

)

then IL(ala*)>L(a) with equality if and only if a = a* (Krishnapuram et
al, 2005) and L(alea') is differentiable with respect to a.

At t-th iteration of IRWLS procedure, we have
2
A Q;
Lial o) = ¢ (a)+ 5 Y (—+lai]) .
2= ot

Then a“* " is obtained by minimizing ZL(a| a® ) with respect to a as

"= (KK+ AW () Ky
where W(a™) is the diagonal matrix consisted of 1/la”],i=1,--,n .
During iteration, we find that some «;'s tend to zero keeping the value of

objective function L(a) decreasing. This motivates that we can find sparse
estimates of o which provides decreasing value of the objective function ZL(a)
at the same time.



740 Hyejung Park

Algorithm of SKR using IRWLS Procedure:

1. Set v= (1:n) and a(@)? .

(t4+1)

2. Find solution a(v) which minimizes Z(a(v)]a(v)® ).

3. Set ozi—”” = 0 which is very close to zero.

Find v= {i| a§t+1) = 0}, which is, a vector of subset of {1,2,---,n} satisfying

ozi—Hl) = 0,

4. iterate 2-4 until | Z(a () )= Lla(v))| < Tol.

The functional structures of SKR is characterized by hyper-parameters, the
regularization parameter € and the kernel parameters. To select the
hyper—parameters of SKR using IRWLS we define the cross validation(CV)
function as follows:

V=L Sy P

=
where A is the set of hyper-parameters and g ,\(7” (z.) is the regression function
estimated without i—th observation. Since for each candidate of hyper—parameters,
L ,\(”)(xi) for ¢=1,---,n, should be evaluated, selecting parameters using CV
function is computationally burdensome. Using derivation of the generalized

approximate cross validation function from the CV function by Yuan(2006), we
have the generalized cross validation(GCV) function as follows

[

n 33 i o))

GOV(A)= —— ; ®)

(n—tr(H))
where H= K(: ,0)(K(: o) K(: ,0)+ AW 'K ,w) v={ita,= 0}, is the hat
matrix such that fp,(z)=Hy with the (ij)-th element h;;=oulz,)/oy; GCV
function cannot be applied to SVR using QP since H is not computable. But for

SKR using IRWLS, hyper—parameters can be easily selected by applying GCV
function.

4. Numerical Studies

We illustrate the performance of the regression estimation using SKR using
IRWLS through the simulated data and the real data on the nonlinear regression
cases.

200 data sets are generated to present the prediction performance of the proposed
procedure - 100 for training and 100 for testing. Each data set consists of 100 z's
and 100 y’s. Here z's are randomly generated from U(0,1) and y's are
generated from a normal distribution N(1+z+sin(27z),1). Figure 1(Left) shows
the true regression functions imposed on the scatter plots of one of 100 training
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data sets. The regression function a given x can be modelled as p(z)= w'¢(X)
where X=(1,2)". The radial basis kernel function is utilized in this example,
which is

K(xl,IQ) =exp(— —(xl —IQ)Q).

For SKR using IRWLS, (C,¢?) is selected from GCV function (5). To illustrate
the prediction performance of SKR using IRWLS, we compare it with SVM and

RVM. For SVM, eis obtained from 3s ,/IOgT () _ 0830, where s is the

standard deviation of y (Cherkassky and Ma, 2004). 10 fold cross validation is
used in SVM and RVM for the selection of (C,o?) and o2, respectively.

The predicted mean squared error(PMSE) is used as the prediction performance
measure defined by

Ty

PMSE= -3 () — jilz,) ).

=1

The averages of 100 PMSEs and the averages of numbers of retained kernel
functions by SVM, RVM, and SKR using IRWLS are obtained as (0.0757, 0.1257,
0.0551) and (54.32, 11.46, 40.07), respectively. Figure 2(Left) shows boxplots of
PMSEs obtained by SVM, RVM, and SKR using IRWLS, respectively. We can see
that SKR using IRWLS, provides better result than other two regressions in this
example. Figure 2(Right) shows boxplots of numbers of retained kernel functions.
We can see that SKR using IRWLS provides more sparsity than SVM.
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Figure 1. True regression functions imposed on the scatter plots of
one of 100 training data sets(Left) and the scatter plots of Ultrasonic
data(Right).
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The ultrasonic data set available from http//www.itl.nist.gov/div898/strd/nls,
where the ultrasonic response and the metal distance are known to be nonlinearly
related, is used to illustrate the prediction performance of SKR using IRWLS.
Figure 1(Right) shows the scatter plots of 214 data points. We randomly divided
the data into training data(142 data points) and test data(72 data points) 100
times. The radial basis kernel function is utilized in this example. For SKR using
IRWLS, (C ¢®) is selected from GCV function (5). To illustrate the prediction
performance of SKR using IRWLS, we compare it with SVM and RVM. For
SVM, e is obtained as 0.5604(Cherkassky and Ma, 2004). 10 fold cross validation

is used in SVM and RVM for the selection of (C,¢®) and ¢, respectively. Here
the predicted mean squared error(PMSE) is defined by

Ty

1 ~
PMSE= — >y, — play,) )
ti=1

The averages of 100 PMSEs and the averages of numbers of retained kernel
functions by SVM, RVM, and SKR using IRWLS are obtained as (11.0885,
11.8355, 11.5905) and (114.83, 38.98, 81.78), respectively. Figure 3(Left) shows
boxplots of PMSEs obtained by SVM, RVM, and SKR using IRWLS, respectively.
We can see that SVM provides slightly better result than other two regressions in
this example. Figure 3(Right) shows boxplots of numbers of retained kernel
functions. We can see that SKR using IRWLS provides more sparsity than SVM.
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TFigure 2. Predicted mean squared errors(Left) and numbers of retained
kernel functions(Right) by SVM, RVM, and SKR using IRWLS,
respectively, for simulated data.
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Figure 3. Predicted mean squared errors(Left) and numbers of
retained kernel functions(Right) by SVM, RVM, and SKR using
IRWLS, respectively, for Ultrasonic data.

5. Conclusions

In this paper, we dealt with estimating the regression function by SKR using
IRWLS and obtained GCV function for the proposed procedure. Through the
example we showed that the proposed procedure derives the satisfying results. We
also found that SKR using IRWLS has an advantage other than SVM and RVM,
that is, it provides an easy model selection method using GCV function.
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