• 제목/요약/키워드: Linear Programming Model

Search Result 449, Processing Time 0.024 seconds

An Optimal Surveillance Units Assignment Model Using Integer Programming (정수계획법을 이용한 최적 감시장비 배치모형에 관한 연구)

  • 서성철;정규련
    • Journal of the military operations research society of Korea
    • /
    • v.23 no.1
    • /
    • pp.14-24
    • /
    • 1997
  • This study is to develop an optimal surveillance units assignment model in order to obtain the maximized surveillance efficiency with the limited surveillance units. There are many mathematical models which deal with problems to assign weapons such as aircrafts, missiles and guns to targets. These models minimize the lost required to attack, the threat forecast from the enemy, or both of them. However, a problem of the efficient assignment of surveillance units is not studied yet, nevertbless it is important in the battlefield surveillance system. This paper is concerned with the development of the optimal surveillance units assignment model using integer programming. An optimal integer solution of the model can be obtained by using linear programming and branch and bound method.

  • PDF

A Study on Developing an Integrated Model of Facility Location Problems and Safety Stock Optimization Problems in Supply Chain Management (공급사슬관리에서 생산입지선정 문제와 안전재고 최적화 문제의 통합모형 개발에 관한 연구)

  • Cho Geon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.1
    • /
    • pp.91-103
    • /
    • 2006
  • Given a bill of materials (BOM) tree T labeled by the breadth first search (BFS) order from node 0 to node n and a general network ${\Im}=(V,A)$, where V={1,2,...,m} is the set of production facilities and A is the set of arcs representing transportation links between any of two facilities, we assume that each node of T stands for not only a component. but also a production stage which is a possible stocking point and operates under a periodic review base-stock policy, We also assume that the random demand which can be achieved by a suitable service level only occurs at the root node 0 of T and has a normal distribution $N({\mu},{\sigma}^2)$. Then our integrated model of facility location problems and safety stock optimization problem (FLP&SSOP) is to identify both the facility locations at which partitioned subtrees of T are produced and the optimal assignment of safety stocks so that the sum of production cost, inventory holding cost, and transportation cost is minimized while meeting the pre-specified service level for the final product. In this paper, we first formulate (FLP&SSOP) as a nonlinear integer programming model and show that it can be reformulated as a 0-1 linear integer programming model with an exponential number of decision variables. We then show that the linear programming relaxation of the reformulated model has an integrality property which guarantees that it can be optimally solved by a column generation method.

A Comparative Study of the Results of the Regression Analysis by Linear Programming (선형계획법을 이용한 회귀분석 결과의 비교 연구)

  • Kim, Gwang-Su;Jeong, Ji-An;Lee, Jin-Gyu
    • Journal of Korean Society for Quality Management
    • /
    • v.21 no.1
    • /
    • pp.161-170
    • /
    • 1993
  • This study attempts to present the linear regression analysis that involves more than one regressor variable, because regression analysis is the most widely used statistical technique for describing, predicting and estimating the relationships between given data. The model of multiple linear regression may be solved directly by the two linear programming methods, i.e., to minimize the sum of the absolute deviation (MSD) and to minimize the maximum deviation(MMD). In addition, some results was compared to each techniques for accuracy and tested to the validity of statistical meaning.

  • PDF

Mathematical Programming Models for Establishing Dominance with Hierarchically Structured Attribute Tree (계층구조의 속성을 가지는 의사결정 문제의 선호순위도출을 위한 수리계획모형)

  • Han, Chang-Hee
    • Journal of the military operations research society of Korea
    • /
    • v.28 no.2
    • /
    • pp.34-55
    • /
    • 2002
  • This paper deals with the multiple attribute decision making problem when a decision maker incompletely articulates his/her preferences about the attribute weight and alternative value. Furthermore, we consider the attribute tree which is structured hierarchically. Techniques for establishing dominance with linear partial information are proposed in a hierarchically structured attribute tree. The linear additive value function under certainty is used in the model. The incompletely specified information constructs a feasible region of linear constraints and therefore the pairwise dominance relationship between alternatives leads to intractable non-linear programming. Hence, we propose solution techniques to handle this difficulty. Also, to handle the tree structure, we break down the attribute tree into sub-trees. Due to there cursive structure of the solution technique, the optimization results from sub-trees can be utilized in computing the value interval on the topmost attribute. The value intervals computed by the proposed solution techniques can be used to establishing the pairwise dominance relation between alternatives. In this paper, pairwise dominance relation will be represented as strict dominance and weak dominance, which ware already defined in earlier researches.

Lane Detection on Non-flat Road Using Piecewise Linear Model (굴곡진 도로에서의 구간 선형 모델을 이용한 차선 검출)

  • Jeong, Min-Young;Kim, Gyeonghwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.6
    • /
    • pp.322-332
    • /
    • 2014
  • This paper proposes a robust lane detection algorithm for non-flat roads by combining a piecewise linear model and dynamic programming. Compared with other lane models, the piecewise linear model can represent 3D shapes of roads from the scenes acquired by monocular camera since it can form a curved surface through a set of planar road. To represent the real road, the planar roads are created by various angles and positions at each section. And dynamic programming determines an optimal combination of planar roads based on lane properties. Experiment results demonstrate the robustness of proposed algorithm against non-flat road, curved road, and camera vibration.

Constrained $L_1$-Estimation in Linear Regression

  • Kim, Bu-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.3
    • /
    • pp.581-589
    • /
    • 1998
  • An algorithm is proposed for the $L_1$-estimation with linear equality and inequality constraints in linear regression model. The algorithm employs a linear scaling transformation to obtain the optimal solution of linear programming type problem. And a special scheme is used to maintain the feasibility of the updated solution at each iteration. The convergence of the proposed algorithm is proved. In addition, the updating and orthogonal decomposition techniques are employed to improve the computational efficiency and numerical stability.

  • PDF

On Solving the Fuzzy Goal Programming and Its Extension (불분명한 북표계확볍과 그 확장)

  • 정충영
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.11 no.2
    • /
    • pp.79-87
    • /
    • 1986
  • This paper illustrates a new method to solve the fuzzy goal programming (FGP) problem. It is proved that the FGP proposed by Narasimhan can be solved on the basis of linear programming(LP) model. Narasimhan formulated the FGP problem as a set of $S^{K}$LP problems, each containing 3K constraints, where K is the number of fuzzy goals/constraints. Whereas Hanna formulated the FGP problem as a single LP problem with only 2K constraints and 2K + 1 additional variables. This paper presents that the FGP problem can be transformed with easy into a single LP model with 2K constraints and only one additional variables. And we propose extended FGP :(1) FGP with weights associated with individual goals, (2) FGP with preemptive prioities. The extended FGP has a framework that is identical to that of conventional goal programming (GP), such that the extended FGP can be applied with fuzzy concept to the all areas where GP can be applied.d.

  • PDF

Development and Evaluation of a Simulation Model for Dairy Cattle Production Systems Integrated with Forage Crop Production

  • Kikuhara, K.;Kumagai, H.;Hirooka, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.1
    • /
    • pp.57-71
    • /
    • 2009
  • Crop-livestock mixed farming systems depend on the efficiency with which nutrients are conserved and recycled. Home-grown forage is used as animal feed and animal excretions are applied to cultivated crop lands as manure. The objective of this study was to develop a mixed farming system model for dairy cattle in Japan. The model consisted of four sub-models: the nutrient requirement model, based on the Japanese Feeding Standards to determine requirements for energy, crude protein, dry matter intake, calcium, phosphorus and vitamin A; the optimum diet formulation model for determining the optimum diets that satisfy nutrient requirements at lowest cost, using linear programming; the herd dynamic model to calculate the numbers of cows in each reproductive cycle; and the whole farm optimization model to evaluate whole farm management from economic and environmental viewpoints and to optimize strategies for the target farm or system. To examine the model' validity, its predictions were compared against best practices for dairy farm management. Sensitivity analyses indicated that higher yielding cows lead to better economic results but higher emvironmental load in dairy cattle systems integrated with forage crop production.

The Optimal Subchannel and Bit Allocation for Multiuser OFDM System: A Dual-Decomposition Approach (다중 사용자 OFDM 시스템의 최적 부채널 및 비트 할당: Dual-Decomposition 방법)

  • Park, Tae-Hyung;Im, Sung-Bin;Seo, Man-Jung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1C
    • /
    • pp.90-97
    • /
    • 2009
  • The advantages of the orthogonal frequency division multiplexing (OFDM) are high spectral efficiency, resiliency to RF interference, and lower multi-path distortion. To further utilize vast channel capacity of the multiuser OFDM, one has to find the efficient adaptive subchannel and bit allocation among users. In this paper, we propose an 0-1 integer programming model formulating the optimal subchannel and bit allocation problem of the multiuser OFDM. We employ a dual-decomposition method that provides a tight linear programming (LP) relaxation bound. Simulation results are provided to show the effectiveness of the 0-1 integer programming model. MATLAB simulation on a system employing M-ary quardarature amplitude modulation (MQAM) assuming a frequency-selective channel consisting of three independent Rayleigh multi-paths are carried with the optimal subchannel and bit allocation solution generated by 0-1 integer programming model.

Reliability Optimization By using a Nonlinear Programming (비선형계량법(非線型計量法)을 이용한 신뢰성(信賴性)의 최적화(最適化))

  • Lee, Chang-Ho
    • Journal of Korean Society for Quality Management
    • /
    • v.9 no.2
    • /
    • pp.31-36
    • /
    • 1981
  • This paper deals with the reliability optimization of parallel - in - series system subject to several linear constraints. The model of nonlinear constrained optimization is transformed to a saddle point problem by using Lagrange multipliers. Then Newton - Raphson method is used to solve the resulting problem and these step - by - step solution procedures are programmed in Basic Level II of micro - computer TRS-80. An example which has two linear constraints is solved and the results are analyzed.

  • PDF