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Abstract

This paper deals with the multiple attribute decision making problem when a
decision maker incomplet'ely. articulates his/her preferences abou_t the attribute weight
and alternative value. Furthermore, we consider the attribute tree which is structured
hierarchically. Techniques for establishing dominance with linear partial information
are proposed in a hierarchically structured attribute tree. The linear additive value
function under certainty is used in the model. The incompletely specified information
constructs a feasible region of linear constraints and therefore the pairwise dominance
relationship between alternatives leads to intractable non-linear programming. Hence,
we propose solution techniques to handle this difficulty. Also, to handle the tree
structure, we break down the attribute tree into sub-trees. Due to there cursive
structure of the solution technique, the optimization results from sub-trees can be
utilized in computing the value interval on the topmost attribute. The value intervals
computed by the proposed solution techniques can be used to establishing the
pairwise dominance relation between alternatives. In this paper, pairwise dominance
relation will be represented as strict dominance and weak dominance, which ware

already defined in earlier researches.

« BT OAY AR

_34_



1. Introduction

There are many methods in the field of decision analysis to help a decision maker
(DM) come up with a decision, that is, to find an optimal or satisfying solution.
However, the gap between theoretical research and practical needs still exists. This
gap could be due to the fact that the decision problem or the preferences of the DM
are not (yet) structured enough to allow the successful application of most decision
analysis methods. For example, the DM may not be willing or able to specify the
preferences in the detailed way required by the corresponding method. To narrow the
gap between theoretical research and practical application, we need decision models
that can be used within decision - situations having incomplete information on
parameters which describe the decision situation. Initially explored by Fishburn [1],
there have been a number of studies which consider linear partial information (LPI)
in the field of multi~attribute decision making (MADM), one specific field of decision
analysis.

The problem of MADM is defined by selecting or ranking the most preferable
alternatives from the alternatives considered. The alternatives are evaluated by a
finite discrete set of attributes. This set of attributes can be structured in a
hierarchical form. The hierarchically structured attribute tree is used to determine an
overall evaluation score of each alternative. The evaluation of alternatives requires
that we elicit the value of the consequences on the lowest level attributes and the
relative weight of attributes.

The types of multi-attribute value models used have varied from very simple
weight linear models to rather complex multiplicative models. In this paper, we use a
simple linear additive model for obtaining the overall evaluation score of alternatives,
since the linear weighting model is the best known and most widely used. The
preferentially independent condition is required for the linear additive model [2]. The
preferentially independent condition means that the contributions of an individual
attribute to the overall evaluation is independent of other attribute values. It has the
advantages of being easily learnedand used by the DM [3].

The aim of this paper is to present tools or techniques for MADM with the DM's
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LPI on attribute weights and alternative values. We describe mathematical
programming models for establishing pairwise dominance, when the set of attributes
is structured hierarchically. To handle the tree structure, we decompose an attribute
tree into sub-trees. The optimization results from sub-trees can be utilized in
computing the value interval on the upper level attribute. The value interval on the
topmost attribute is used for establishing the dominance relation between two
competing alternatives. Also, the mathematical model allows the DM to provide any
type of LPI on the attribute weight and the value of alternatives, which will become

a set of constraints in the model.

2. Problem Statement and Prior Works

2.1 A Multi—Attribute Value Function

Generally, the MADM problem is composed of a finite discrete set A of

alternatives, which is valued by a finite discrete set I={1,2,3, . . . ,m} of attributes.

Let Wi be an attribute weight which represents the relative importance of the ith
attribute and Vi(X¥)be the value of alternative x on attribute i €/ . We will use the
following notation to represent a hierarchically structured attribute tree. The

hierarchically structured attribute tree can be partitioned into levels, LI, L2, . . ., Lh

such that the kth level attributes are in Lk. By definition LIconsists of the topmost
attribute, Wi=1. The set D(I)CI consists of the attributes which are structured

The set DT(i)CI

immediately under attribute i, the set of direct successors of i.
consists of the lowest level attributes which are structured under attribute i. The set
IT el especially consists of the lowest level attributes which are structured under
the topmost attribute, I, :DT(I), I, ={i el| D)=} The set PLU) I
consists of the attribute { and all attributes which are structured under attribute i,
D(i),DT (i) = DL(i)

Then, the linear weighting model is
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v(x) = ZWiv,.(x) with

ieDT(1)
v,(x°)=0 v,(x ) =1 Vi eDT(1)
dYw, =1 w,20 Viel

ieDT (1)

* .
where )Co and X are respectively the most and worst preferred value on the ith

attribute.

2.2 Linear Partial Information

W, and vi(') for all i, is precisely

When the parameter value information , i.e.
assessed by the DM, then the most preferred alternative can be easily determined.
However, it is no simple matter to measure the DM's precise information on
parameters such as attribute weights and alternative values. The reasons may be
that (1) a decision should be made under time pressure and lack of knowledge or
data [4], (2) many of the attributes are intangible or non-monetary because they
reflect social and environmental impacts [5], and (3) the DM has limited attention
and information processing capabilities [6], especially on the judgment of numerical
values under a complex and uncertain environment. These may take the form of

linear partial information such as rankings, interval description, and so on. Examples

of the LPI on attribute weights are given by the following forms:

Form 1. {wi wa}

Form 2. (Wi ™V, 2ai}

>
Form (Wi =&V,
(& <w, <q, +&y

Wi TV EWe Wy gor JEE 2]

Form

o s WD

Form

where {&;} and {€:} are non-negative constants [5, 7]. Incomplete information on

the value of alternatives can be similarly expressed.
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Form 1 is widely used to construct ordinal ranking, because it is one of the most
simple forms. Form 5 is a ranking of differences of adjacent parameters obtained by
ranking between two parameters, which can be subsequently constructed based on

Form 1. A difficulty in taking the information of Forms 2-4 is to precisely justify
their constants, since these forms contain numerical values such as & and &,

However, the assessment of these forms can reduce much of the feasible decision

space denoted by LPL

2.3 Prior Works in MADM with Linear Partial Information

First of all, we discuss the representative methods that consider the incomplete
information and multi-attribute value function. The UTA method [8] applies
regression analysis to assess linear additive value functions from the ranking of
alternatives. Using post-optimality analysis, it calculates all utility functions within a
certain range consistent with the DM's information. ARIADNE [9] admits the
incomplete information of utilities, attribute weights and probabilities, and allows the
DM to induce constraints on the parameters through direct comparison of
alternatives. The resulting dominance structure is displayed as a directed graph,
called a dominance graph. HOPIE [10lrequires the DM to provide holistic judgments
on hypothetical alternatives. The alternatives have to be evaluated by the interval
description, etc. Based on this incomplete information, it allows the DM to check
dominance relation.

In the context of the analytic hierarchy process, Saaty and Vargas [11]suggest the
use of pairwise comparison intervals (Form 3 in section 2) which allow the DM to
make ratio statements as interval values on a ratio scale, but point out the
computational difficulties of analyzing eigenvectors with pairwise comparison interval.
Arbel [12]interprets pairwise comparison intervals as linear constraints which at each
attribute define a non-empty set of weights called the feasible region.

PAIRS [13] developed an efficient algorithm for synthesizing pairwise comparison
intervals into dominance relations among alternatives. These relations resemble those
employed in the multi-attribute utility model. The algorithm can analyze even large

attribute trees efficiently due to the decomposition of the computations that involve a
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series of linear programs. Based on the PAIRS, Salo and Hmlinen [14] suggest an
interactive decision support process to prevent the feasible region from becoming
empty. The interactive decision support process providesthe DM with a consistency
interval that guides the DM in the specification of new comparisons.

Most of the methods which appear in Table 1 deal mainly with establishing a
strict dominance relation: Alternative x strictly dominates y if and only if the value
of the worst outcome in xis greater that that of the best outcome in y, for a fixed
feasible region denoted by LPI. Unfortunately, the strict dominance of two competing
alternatives may not be always determined with incomplete information. To cope with
the problem, Kmietoicz and Pearman [15] develop a weak dominance relation:
alternative x weakly dominates y if and only if selecting x involves less regret, as
traditionally defined, than selecting yfor a fixed feasible region. Furthermore, Park
and Kim [5ldiscovered by introducing a statistical concept that weak dominance is
always identified for a fixed feasible region. Thus it may be used as a certain

decision rule when the DM is not able to provide additional information.

<Table 1> Earlier methods on MADM with incomplete information

Related Works eight | alternative. | atiributes

Sarin (1977) [16]

Hannan (1981) [17] Form 1 Cardinal No
Kirkwood and Sarin (1985) [18]

Sage and White (1984) [9] All Form All Form No
Kmietowicz and Pearman (1982) [19] Form 1,5 Cardinal No
Kmietowicz and Pearman (1984) [15] All Form Cardinal No
Cook and Kress (1991,1997) [20, 21] Form 1 Form 1 No
Salo and Hamalainen (1995) [14] Form 3 Form 3 Yes
Bryson and Mobolurin (1995) [22] Form 3 Form 3 Yes
Park and Kim (1997) [5] All Form All Form No
Kim and Han (1999) [7] All Form All Form No
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In addition to the earlier works mentioned above, there are a number of studies
on MADM with incomplete information. We summarize the earlier methods in <Table 1>
The characteristics of the studies are divided into three points of view: {a) types of
preference information on attribute weights, (b) types of preference information on
the value of alternatives’outcome, and (c) consideration of the hierarchically
structured attributes tree. In questions (a) and (b), all possible types of LPI in each
method are contained in Table 1. The methods which answered "yes”in question (c)
consider the attribute tree. When the five forms of LPI on the weights and values
are assessed from the DM and the attributes are structured hierarchically, none of
the methods in Table 1 is able to provide the dominance relation. In this paper, we
will propose a method that is capable of establishing thedominance relation in the
situation where the DM articulates all types of LPI on the weights, and values and a

hierarchically structured attribute tree is given.

3. Mathematical Programming Model for Establishing Dominance

Given an attribute tree, the DM may provide his LPI on attribute weights, Wi
and alternative values, vi('). The LPI on attribute weights, Wi can be elicited
locally within each set D(i) for i GEIT. Let W[D(’)] be the set of LPI elicited by
the DM, regarding the relative importance of attributes J eD (i ) Let Vi be the set
of LPI regarding the alternative value. The LPI on Vi () can be elicited by the DM
in lowest-level attributes? EIT. We assume that WID(i)] and V; are consistent

sets. The sets W[D(i )] and Vi can be composed of any types of LPI mentioned in
section 2.
With the DM'’s LPI, the value interval of alternatives x and y on the attribute k,

can be formulated as

@, (x,y)=min or max Zwi[vi(x)—vi(x)]
v 1€DT (k) (3.1.a)

where
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(W[D()] for i ¢ DT(k), i e DL(k)
Yw,=w, foriegDT(k), i eDL(k)

Wk = {JPW)
w, =1
w, 20 for i e DL(k) (3.1.0)
e Vi), (v) €V, for i eDT (k)
o<y, (x)v, () <1 for i eDT (k) (3.1.¢)

When LPI on attribute weights is elicited locally within each set D(i),i eIT,

the DM may provide LPI in the concept of ZjeD(i)wf =1 . Thus, if Form 2 or 4 is
included in the set of LPI, W[D(i)] for i €EIT, then, in order to useForm 2 or 4 in

(3.1), the constants { %} and {€i} in Form 2 or 4 should be normalized from
w.=1, w.=w, L
Z:J'eD(i) J into ZjeD(i) Y ! Normalization is not needed for constants

{®;} and {€i)} in Form 3, since the { %} and {€i}in Form 3 represent the relative

importance of attributes.

If the value of either Wi or Vi() is known precisely, then model (3.1) becomes
LP, thus it can be easily solved. Assume that the values of W, and Vi(') are

identified imprecisely. Then the model becomes non-LP, since the objective function is

a sum-product type of unknown variables.In this case our first aim is to compute
+ -

the values, ¢, (x’y) and Dk (x,y), which are respectively maximum and minimum

values of the objective function in (3.1). Secondly, we should obtain the value

interval on the topmost attribute, "1, which is necessary for establishing dominance

relation between alternatives. We now describe several techniques for this problem.

Techniquel. Assume that the DM’'s LPI on the alternative value for each lowest

level attribute are functionally independent, which is formally denoted by a notation,
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Vi'LV/', Vi;ﬁj, i,J GDT(k). Then (3.1l.a) is "separable” for each lowest level

attribute ? EDT(k), thus (3.1) can be solved by the following LPs:

(Dk(x,y) = min (Or maX) Zwié:i(x:y)
wk ieDT (k) (3.2.a)

with

&(cy)=min (o max) w(x)-v(),  ieDT()

If we put k=1 in (3.2), then we can obtain the value interval on the topmost
attribute W1, [¢1_(x’y),¢l+(x’y)].

The weight of upper level attributes can be represented bythe sum of attribute
weights which are structured immediately under the upper level attribute. Namely,
zfeD(i)wf =W for ielr‘ Also, the weight of upper level attribute can be
represented as the sum of the weights of the twig level attributes which are
structured under the upper level attribute. Namely, ZjeDT(i)wf =W for 1 €1y
Then the constraints, W[D(i)] for ielr in (3.1), can be represented as
W[DT(i)] for ig]r. A detailed description of W[DT(i)], with an example, is

shown in the next section. Now, the constraints set (3.1.b), Wk , can be changed as

follows:
WI[DT (i)] fori e DT (k), i e DL(k)
wk = Zw,. =1
ieDT (k)
w, >0 for i e DT (k) 3.3)

k
If we use the set WT instead of W* in (3.1), then another solution technique is

provided for solving this problem.
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Technique?2. Assume that the DM’'s LPI on the alternatives’ value for each

lowest level attribute is functionally independent. If the constraints set of (3.1.b),
k

Wk, is replaced with the constraints set of (3.3), WT , then (3.1) which has the

i eDT(k) thys

k
constraint set WT is "separable” for each lowest level attribute

yielding a set of the following LPs:

@, (x,y)=min (or max) > w,&(x,y)
wi ieDT (k) (3.3.a3)
with
E(x,y)=min (or max) v,(x)-v,(y), i eDT (k)
v, (3.3.b)

If we put k=1 in (3.3), then we can obtain the value interval on the topmost

- +
attribute W1, [P (xa}’),¢1 ey
Now, we will decompose an attribute tree into sub-trees and formulate a

mathematical programming model which is capable of computing the value interval.
In case that value intervals on one or more attribute 7 EP(k),P(k)CDL(k)
,k "’EIT arealready obtained by Technique 1 or 2, another formulation for obtaining

value interval on attribute k, kel 7 can be followed as:

@, (x,y)=min _or max Zwi[v,. (x)—v,.(y)]

ieDT Y (k) (3.4.a)
where
(WD) for i ¢ DTV (k), i e DL" (k)
dw, =w, for i e DTV (k), i e DL (k)
W* = jeni)
Wk =
w, 20 for i e DIV (k) (3.4.b)
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v, (v e, for i eDT(k)-DT(p)
v  =10<v. (v, (y)<1 far i eDT(k)-DI(p)
V,=o,a0)<v,(x)-v,0)<gky)} foa pePk) (3.4.c)

where DT (k)=DT(k)UP()-DT(p)  ana DL (K)=DL(k)~(DL(p)~P(k))

If we want to use the constraints set like (3.3) instead of (3.4.b), then the set (3.3)

k
should also be revised in the formulation of (3.4). The revised set of WT is as follows:

W[DT(i)] for i DT (k), i eDILY (k) )
Wi=<4 Dw, =1
ieDT (k)
w, 20 for i e DT" (k) (3.5)

Furthermore, if there exists one or more attributes, EP(p),P(p)CDL(p),
pel r, of which the value interval should be obtained from (3.4), the recursive

use of (3.4) is needed to obtain the value intervals on attribute p. For example, the
value interval on the attribute p can be obtained by the use of the formulation (3.4)
in which p and ¢ are substituted for Xk and p respectively. Of course, if we
encounterthe attribute that is not needed to use (3.4) in the course of using (3.4)
recursively, then Technique 1 or 2 will be used for obtaining the value interval for

that attribute.

Technique3. Since Vp, P eP(k)is functionally independent for each attribute
. N
ieDT (k), (3.4) can be solved by LPs like (3.2) or (3.3). Using the recursive

structure of (3.4), the value interval on the topmost attribute, W, can be obtained by

putting k=1 in (3.4).

Any combination of the attribute weights and alternative values in the lower level
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.
of the tree can not give the value qop(x’y) that is greater than Py (x’y) and smaller

than P (x’y). In addition, the weights of the upper level attribute are independent
of the attribute weight and the alternative value at the lower level of the attribute

tree. Based on these facts, the following property of Technique 3 can be derived.

- +
Property of Technique3. Using the value interval, [P (x’y),¢P (x,y)], computed

at the lower level of the tree in (3.4), guarantees the optimal (minimum or

maximum) value interval of the attribute k.
Proof. See the Appendix.

Given the value intervals on the topmost attribute, the strict and weak dominance

relation between alternatives x and y, should be established. If ¢1_(x:y)20 or

.
equivalently @ (x >y ) < O, then alternative x strictly dominates y. Simply stated,

the worst value for x is greater than or equal to the best value for y, for a fixed

—_ — + .
feasible region. If @ (x.3)20 (,x) o equivalently o (x,y) 2 @, (J,%), then
alternative x weakly dominates y. Simply, the worst (best) possible value for x is

greater than or equal to the worst (best) possible value for y, for a fixed feasible

region.

4. An Illustrative Example

This section illustrates features of the proposed method in the context of an
international supplier selection problem. The purchasing department ofa company is
considering three competing suppliers which are denoted by x: Japanese supplier, y:
Indonesian supplier and z: Korean supplier. The suppliers (alternatives) are evaluated
by the attribute tree in Figure 1. A more detailed explanation of the attributes inFig.

1 is provided in the literature of Min [23] and Weber et al. [24].
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1. Best foreign supplier

2: Cultural and
Communication
Barriers

3: Product

4:Financial
Quality

terms

5: Cultural
Similarity

6: EDI

7: Ethical 8: Payment
Capability

10: Freight
standard terms

terms

11: Purchasing 12: Transport
Price Cost

Figure 1. Hierarchically structured attribute tree for the example

Suppose that LPI on attribute weights from the purchasing department are as

follows:

WIDQ)]-fw, 2w, 2w, w,—w, 2w, -w,}
WIDQ2)]-ws 2w, 2w, w, 22w}
WD) -fws 2wy 2w, wy, —wy, 202}
W[D(9)]-{w, =w,,, 04 <w, <07}

For example, the incompletely specified weight, Ws 22W6 in W[D (2)] means

that attribute 5, cultural similarity, is at least twice as important as attribute 6,

Electronic data interchange(EDI) capability, in view of attribute 2, cultural and

communication barriers.
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Suppose the purchasing department’s LPI on alternative values is given in functionally

independent fashion for each lowest level attribute, IT = { 3,5,6,7,8,10,11,12 }, the set

Vi is shown as follows:

v3={1=v;(x)2v;(2) 2v;(¥) =0, vy (x)-v;(z) 2v;(2) - v, ()}

vs={1 =v5(2)2v(x)2v(¥)=0, vs(2)-v,(x) 201, 03 <v,(2)< 0.6}
ve=1 =vs(x)2v,(2)2v,(¥) =0, vs(x)23v,(z)}
v7={l=v,(¥)2v,(z2)2v,(x)=0, v,(z) 2 2v,(x)}

ve={l =vy(x) 2vy(y) 2 vy(z) = 0}

vio-{1 =v,,(¥) 2 v, (2) 2 v, (x) =0}

viz={1=v,(z)2v,; (x)2v,(y)=0}

viz=-11=v,(¥) 2 v, (x)2v,(z) =0}

Now, we decompose the atiribute tree in Figure 1 into two sub-trees in Figure 2

and compute the value interval on the attribute 4 (Financial terms).

In the sub-tree of Figure 2(a), the set DT(4) is {8,10,11,12} and DL(4) is

{4,8,9,10,11,12}. With the DM's LPI on attribute weights, the set of constraints W4 in

the sub-tree of Figure 2(a) is

wh =

(Wn 2W,

04-(w,, +w,)sw,, <07 -(w,, +w,,)
W 2w, 2w,

We—wy 202-(wg +wy +w,,)

Wi TWy =W,

W +Wo +wW, =W,

w, =1

\w, 20 i=489]10]1112.
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4:Financial
terms

10: Freight
terms

8: Payment
terms

12: Transport
Cost

(a)

1: Best foreign supplier

2: Cultural and
Communication
Barriers

3: Product
Quality

4.Financial
terms

5: Cultural 6. EDI 7: Ethical
Similarity Capability standard
(b)

<Figure 2> Sub-trees for the tree of Figure 1
(a) The sub -tree for attribute 4

(b) The sub -tree for topmost attribute 1

The constraints, Ws ~Wo 202 i, WID(4)] ang 04 <w,, <07 ;, W[D(9)],
are normalized in the above W4. Since the attribute weight, Wo  can be represented

by the sum of twig level attribute Witand Y12, and W4 can be represented by
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4
We tWo +W,, W, {5 the above W4, the constraints set Wi can

be represented as follows:

wll '>‘w12

04-(w,, +w,,)<w,, <07-(w,, +w,,)

WT4 - wS ZWH +w12 2M)IO

Wy —(W,, +w,)202-(Wy +(w,, +w,)+w)
We + (W) +wy,)+wy, =1

W, 20 i=810,11,12.

4
With the set, V8, V10, V1I, V12, and W4 or WT , the value intervals for attribute 4,

[(p;(x,y) goj(x,y)], is derived by using Technique 1 or 2, An example of the

formulation for alternatives x and vy is

@, (x,y)= ;1}0%7}4 W& (x,y)+w G (x,y)+w,, &, (x, ) +w,, 8, (x,y)}

with

G (x,y)=max{vy (x)=vs (¥) 1=vs(x)2vg(y)2vs(2)=0}

Gio (x,y) =max{v,, (x v, (¥ 1=v,(y)2v,,(2)2v,(x)=0}
Gy (x,y)=max{v, (x)}-v, (¥) 1=v,(z)2v,(x)2v,(y)=0}
G, (x,y)=max{v, (x)-v,(¥) 1=v,(¥y)2v,(x)2v,(z2)=0}

The value é:i(aX’ay), by solving 4 LPs, is (1,~1,1,0). By substitution of the
value 'fi(aX’ay)into the top objective function and solving the LP, @, (x.¥) is 10.

¢;(x,y) = -0.4 is obtained by using "“min” in the place of "max”. Similarly,

(94 (x,2) @©,(X,2)7 =[0.01331.0] and [P+ (V>2), @, (V,2)1=[-0.16,1.0] can be derived.
In sub-tree of Figure 2(b), the set DT(1) is {3,4,5,6,7} and DL(1) is {1,2,3.4,5,6,7}
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The set of constraints W1 in sub-tree of Figure 2(b) is:

p
W,2W, 2W,

W, =W, 2w, —w,
W 22w,

W W 2W, 2W,

W two+w, =w,
W, +w, +w, =w,

w, =1

w,; 20 i=123456,.

The value interval obtained from sub-tree in Figure 2(a) is used as V4 in the sub-tree

of Figure 2(b). With the set, W1, V3, V4, V5, V6, and V7, the value interval on the
- +
topmost attribute, [P (x,y ),¢1 (x,y )], can be derived. An example of the

formulation for alternatives x and y is

@ (x,y)= mWa;x W80, y)+w, & () +w & (x,y) +w & (x,y) +w, & (x,y)}
with '
&(x,y)=max{y;(x)-v;(¥)| 1=vi(x)2vs(z)2v,(y)=0,
vi(x)-vi(z) 2v,(2)-v;(¥)}
&(x,y)=max{y (x)-vi() 1=v4(x)2v(z)2v,(¥) =0, vs(x)23v4(2)}

& (x,y)=max{y,(x)-v,(¥)| 1=v,(¥)2v,(z) 2v,(x) =0, v,(z) 2 2v,(x)}

The value é'(ax’ay)is (1,1,06,1,-1). By substitution of the value é(alf’ay)into

. - +
the top objective function and solving LP, % (x,¥) is obtained as 09111. Similarly,

- +
?1 and P for the other pairs of alternatives can be derived. Thus the following
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yields

(o (x,¥), 0 (x,¥)7 = [0.15, 0.9111)
(@, (v,2) @ (¥,2)7 = [-1, 0.25]

(@) (x,2) @ (x,2)] = [-0.7, 0.6889].

With the value interval on the topmost attribute, the dominance relation between

alternatives is to be established. Alternative x strictly dominates y, because

- - +
@, (x,y) 20 Dye to the fact that the relation @ (X>¥)=—@7 (V,X) s always
satisfied for each pair of alternatives, @, (2,Y) is -0.25 and @1 (2,%) is -0.6889.

Alternative z weakly dominates x and y because @, (2,Y) 2 ¢, (¥,2) and

@, (z,x)2 0 (x,z), Accordingly, we can obtain the preference relation, ¢ dbxdy.

5. Conclusion

We presented techniques to establish dominance relation with the DM’s LPI in a
hierarchically structured attribute tree. The techniques are based on a linear
programming model. It allows the DM to express any type of LPI on attribute
weights and alternative values. Also, to handle the tree structure, we break down an
attribute tree into sub-trees. The optimization results from sub-trees can be utilized
in computing the value interval on the upper level attribute, without changing the
optimal value interval on the upper level attribute. The efficiency of the proposed
technique is dependent upon how one breaks an attribute tree into sub-trees.

Once pairwise dominance relations are established, a set of more than two
alternatives may be ranked based on the transitivity of preferences. The related
studies have been found in the literature [18, 25].

Although commercial software associated with LP such as What’s Best and
LINDQO can check the inconsistency of the DM’s LPI, we assume a consistent set of
LPIL So this still leaves a systematic approach to be developed which can check the

consistency of the DM's LPL
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Appendix:Proof for the Property of Technique3.

k
If we let Pi be the normalized weight of an attribute [ in a sub-~tree k, then the

following equation is satisfied:

Swive)-v,00] et -v. ()

ieDT (k) = ieDT (k) .

In addition, if we break down the tree which has the topmost attribute, Wi, into

L

sub-trees at level 7 of the attribute hierarchy, then newly defined upper level tree

I _
has the normalized attribute weight, Py P ep (k)_L p, and the other lower level

P
sub-trees have the normalized attribute weight, ©5 . Therefore the following is

satisfied:

pr[vi(x)_vi(.y)]

ieDT (k)

Y > prvix)-v.)

peP(k)ieDT (p)

Zp’;N Zpip [vi(x)_vi(y)]

peP(k)  ieDT(p)

WA HER)) (also, > Zpﬁ"co;(x,y)j

pep(k) pep(k)

IA

Accordingly szNw;(x’y) = Zwi[vi(x)_vi(y)] < ZPZN(P;(’C:}’)

pep(k) ieDT (k) pep(k)

Applying these (in)equalities gives
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Zwi[vi(x)_vi(y)]

ieDT (k)
= 2 A -v.0)
ieDT (k)
kN
LY S e )]t 2P o))
peP(k)ieDT (p) ieP (k)
& 2.y (x)-v.(»)] + ZP:‘N[V,-(JC)‘V.-(}’)]
_ pp pl i i . N
T peP()  ieDT(p) et
kY o+
< Y o pn(x,y) + AD;‘:" & (x.y) (: ij‘”ej(x,y)J
pep(k) ;gP(k)( ) ieDTV (k)
kY o
> Y gy + P &) [= Zp!‘”e,f(x,y)]
ieP (k) :'eezq(Tk)(k) ieDT ™ (k)

also,

@ [ (x,y) means @/ (x,y)on attributei € P(k)and &' (x, y) on attributei ¢ P(k). )

Accordingly,

YO0 xy) < Iwn@-v,0)] < T o 6 (x.y)

ieDT ¥ (k) ieDT (k) ieDT ¥ (k)
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