• Title/Summary/Keyword: Linear Prediction

Search Result 1,982, Processing Time 0.026 seconds

A New Noise Reduction Method Based on Linear Prediction

  • Kawamura, Arata;Fujii, Kensaku;Itho, Yoshio;Fukui, Yutaka
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.260-263
    • /
    • 2000
  • A technique that uses linear prediction to achieve noise reduction in a voice signal which has been mixed with an ambient noise (Signal to Noise (S-N) ratio = about 0dB) is proposed. This noise reduction method which is based on the linear prediction estimates the voice spectrum while ignoring the spectrum of the noise. The performance of the noise reduction method is first examined using the transversal linear predictor filter. However, with this method there is deterioration in the tone quality of the predicted voice due to the low level of the S-N ratio. An additional processing circuit is then proposed so as to adjust the noise reduction circuit with an aim of improving the problem of tone deterioration. Next, we consider a practical application where the effects of round on errors arising from fixed-point computation has to be minimized. This minimization is achieved by using the lattice predictor filter which in comparison to the transversal type, is Down to be less sensitive to the round-off error associated with finite word length operations. Finally, we consider a practical application where noise reduction is necessary. In this noise reduction method, both the voice spectrum and the actual noise spectrum are estimated. Noise reduction is achieved by using the linear predictor filter which includes the control of the predictor filter coefficient’s update.

  • PDF

Performance Comparison Analysis of Artificial Intelligence Models for Estimating Remaining Capacity of Lithium-Ion Batteries

  • Kyu-Ha Kim;Byeong-Soo Jung;Sang-Hyun Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.3
    • /
    • pp.310-314
    • /
    • 2023
  • The purpose of this study is to predict the remaining capacity of lithium-ion batteries and evaluate their performance using five artificial intelligence models, including linear regression analysis, decision tree, random forest, neural network, and ensemble model. We is in the study, measured Excel data from the CS2 lithium-ion battery was used, and the prediction accuracy of the model was measured using evaluation indicators such as mean square error, mean absolute error, coefficient of determination, and root mean square error. As a result of this study, the Root Mean Square Error(RMSE) of the linear regression model was 0.045, the decision tree model was 0.038, the random forest model was 0.034, the neural network model was 0.032, and the ensemble model was 0.030. The ensemble model had the best prediction performance, with the neural network model taking second place. The decision tree model and random forest model also performed quite well, and the linear regression model showed poor prediction performance compared to other models. Therefore, through this study, ensemble models and neural network models are most suitable for predicting the remaining capacity of lithium-ion batteries, and decision tree and random forest models also showed good performance. Linear regression models showed relatively poor predictive performance. Therefore, it was concluded that it is appropriate to prioritize ensemble models and neural network models in order to improve the efficiency of battery management and energy systems.

Optimal Solution of Classification (Prediction) Problem

  • Mohammad S. Khrisat
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.129-133
    • /
    • 2023
  • Classification or prediction problem is how to solve it using a specific feature to obtain the predicted class. A wheat seeds specifications 4 3 classes of seeds will be used in a prediction process. A multi linear regression will be built, and a prediction error ratio will be calculated. To enhance the prediction ratio an ANN model will be built and trained. The obtained results will be examined to show how to make a prediction tool capable to compute a predicted class number very close to the target class number.

A Residual Echo and Noise Reduction Scheme with Linear Prediction for Hands-Free Telephony (핸즈프리 전화기를 위한 선형 예측기를 이용한 잔여반향 및 잡음 제거 구조)

  • Hwang, Kyung-Rok;Son, Kyung-Sik;Kim, Hyun-Tae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.5
    • /
    • pp.454-460
    • /
    • 2009
  • In this paper, we propose a residual echo and noise reduction scheme by using linear predictor for hands-free telephony applications. The proposed scheme whitens residual echo by the linear prediction during the non double-talk. But whitened residual echo signal still has speech characteristics. In this scheme, the whitened residual echo signal is more whitened by using the power of the linear prediction error signal and the linear predicted signal. After whitening process, near-end speech and ambient noise is present during double-talk but white noise will appear during non double-talk situation. By linearly predicting again the combined signal of the near-end speech and the whitened signal, the ambient noise is removed. Through computer simulation, it is shown that the proposed method performs well at the side of AIC (acoustic interference cancellation).

Comparison of prediction methods for Nonlinear Time series data with Intervention1)

  • Lee, Sung-Duck;Kim, Ju-Sung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.2
    • /
    • pp.265-274
    • /
    • 2003
  • Time series data are influenced by the external events such as holiday, strike, oil shock, and political change, so the external events cause a sudden change to the time series data. We regard the observation as outlier that occurred as a result of external events. In general, it is called intervention if we know the period and the reason of external events, and it makes an analyst difficult to establish a time series model. Therefore, it is important that we analyze the styles and effects of intervention. In this paper, we considered the linear time series model with invention and compared with nonlinear time series models such as ARCH, GARCH model and also we compared with the combination prediction method that Tong(1990) introduced. In the practical case study, we compared prediction power with RMSE among linear, nonlinear time series model with intervention and combination prediction method.

  • PDF

Serially Correlated Process Monitoring Using Forward and Backward Prediction Errors from Linear Prediction Lattice Filter

  • Choi, Sungwoon;Lee, Sanghoon
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.4
    • /
    • pp.143-150
    • /
    • 1998
  • We propose an adaptive monitoring a, pp.oach for serially correlated data. This algorithm uses the adaptive linear prediction lattice filter (ALPLF) which makes it compute process parameters in real time and recursively update their estimates. It involves computation of the forward and backward prediction errors. CUSUM control charts are a, pp.ied to prediction errors simulaneously in both directions as an omnibus method for detecting changes in process parameters. Results of computer simulations demonstrate that the proposed adaptive monitoring a, pp.oach has great potentials for real-time industrial a, pp.ications, which vary frequently in their control environment.

  • PDF

En-route Trajectory Prediction via Weighted Linear Regression (가중선형회귀를 통한 순항항공기의 궤적예측)

  • Kim, Soyeun;Lee, Keumjin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.4
    • /
    • pp.44-52
    • /
    • 2016
  • The departure flow management is the planning tool to optimize the schedule of the departure aircraft and allows them to join smoothly into the overhead traffic flow. To that end, the arrival time prediction to the merge point for the cruising aircraft is necessary to determined. This paper proposes a trajectory prediction model for the cruising aircraft based on the machine learning approach. The proposed method includes the trajectory vectored from the procedural route and is applied to the historical data to evaluate the prediction performances.

Multichannel Blind Equalization using Multistep Prediction and Adaptive Implementation

  • Ahn, Kyung-Seung;Hwang, Ho-Sun;Hwang, Tae-Jin;Baik, Heung-Ki
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.69-72
    • /
    • 2001
  • Blind equalization of transmission channel is important in communication areas and signal processing applications because it does not need training sequence, nor does it require a priori channel information. Recently, Tong et al. proposed solutions for this problem exploit the diversity induced by antenna array or time oversampling, leading to the second order statistics techniques, fur example, subspace method, prediction error method, and so on. The linear prediction error method is perhaps the most attractive in practice due to the insensitive to blind equalizer length mismatch as well as for its simple adaptive filter implementation. Unfortunately, the previous one-step prediction error method is known to be limited in arbitrary delay. In this paper, we induce the optimal delay, and propose the adaptive blind equalizer with multi-step linear prediction using RLS-type algorithm. Simulation results are presented to demonstrate the proposed algorithm and to compare it with existing algorithms.

  • PDF

RBF Network Structure for Prediction of Non-linear, Non-stationary Time Series (비선형, 비정상 시계열 예측을 위한 RBF(Radial Basis Function) 회로망 구조)

  • Kim, Sang-Hwan;Lee, Jong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.2
    • /
    • pp.168-175
    • /
    • 1999
  • In this paper, a modified RBF(Radial Basis Function) network structure is suggested for the prediction of a time-series with non-linear, non-stationary characteristics. Coventional RBF network predicting time series by using past outputs sense the trajectory of the time series and react when there exists strong relation between input and hidden activation function's RBF center. But this response is highly sensitive to level and trend of time serieses. In order to overcome such dependencies, hidden activation functions are modified to react to the increments of input variable and multiplied by increment(or dectement) for prediction. When the suggested structure is applied to prediction of Macyey-Glass chaotic time series, Lorenz equation, and Rossler equation, improved performances are obtained.

  • PDF

A Study on Square Pore Shape Discrimination Model of Scaffold Using Machine Learning Based Multiple Linear Regression (다중 선형 회귀 기반 기계 학습을 이용한 인공지지체의 사각 기공 형태 진단 모델에 관한 연구)

  • Lee, Song-Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.59-64
    • /
    • 2020
  • In this paper, we found the solution using data based machine learning regression method to check the pore shape, to solve the problem of the experiment quantity occurring when producing scaffold with the 3d printer. Through experiments, we learned secured each print condition and pore shape. We have produced the scaffold from scaffold pore shape defect prediction model using multiple linear regression method. We predicted scaffold pore shapes of unsecured print condition using the manufactured scaffold pore shape defect prediction model. We randomly selected 20 print conditions from various predicted print conditions. We print scaffold five times under same print condition. We measured the pore shape of scaffold. We compared printed average pore shape with predicted pore shape. We have confirmed the prediction model precision is 99 %.