• Title/Summary/Keyword: Linear Prediction

Search Result 1,954, Processing Time 0.048 seconds

DIVERGENT SELECTION FOR POSTWEANING FEED CONVERSION IN ANGUS BEEF CATTLE V. PREDICTION OF FEED CONVERSION USING WEIGHTS AND LINEAR BODY MEASUREMENTS

  • Park, N.H.;Bishop, M.D.;Davis, M.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.3
    • /
    • pp.441-448
    • /
    • 1994
  • Postweaning performance data were obtained on 187 group fed purebred Angus calves from 12 selected sires (six high and six low feed conversion sires) in 1985 and 1986. The objective of this portion of the study was to develop prediction equations for feed conversion from a stepwise regression analysis. Variables measured were on-test weight (ONTSTWT), on-test age (ONTSTAG), five weights by 28-d periods, seven linear body measurements: heart girth (HG), hip height (HH), head width (HDW), head length (HDL), muzzle circumference (MC), length between hooks and pins (HOPIN) and length between shoulder and hooks (SHHO), and backfat thickness (BF). Stepwise regressions for maintenance adjusted feed conversion (ADJFC) and unadjusted feed conversion (UNADFC) over the first 140 d of the test, and total feed conversion (FC) until progeny reached 8.89 mm of back fat were obtained separately by conversion groups and sexes and for combined feed conversion groups and sexes. In general, weights were more important than linear body measurements in prediction of feed utilization. To some extent this was expected as weight is related directly to gain which is a component of feed conversion. Weight at 112 d was the most important variable in prediction of feed conversion when data from both feed conversion groups and sexes were combined. Weights at 84 and 140 d were important variables in prediction of UNADFC and FC, respectively, of bulls. ONTSTWT and weight at 140 d had the highest standardized partial regression coefficients for UNADFC and ADJFC, respectively, of heifers. Results indicated that linear measurements, such as MC, HDL and HOPIN, are useful in prediction of feed conversion when feed in takes are unavailable.

Adaptive Two Dimensional Linear Prediction Algorithm For Estimating Incident Angles of Multiple Broadbamd Signals. (다수의 광대역 신호의 입사각 추정을 위한 이차원의 정응선형예측 알고리즘)

  • 김태원
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1987.11a
    • /
    • pp.61-65
    • /
    • 1987
  • An algorithm for estimating incident angles of multiple broaband signals is proposed. The method adopts semicausal model for two dimensional linear prediction filter coefficients such that the arithmatic averag of the mean squared values of the forward and reverse prediction arrors is minimized. Preliminary results demonstrating the performance of the proposed method are presented. Simulation results indicate that the performance depends on signal-to-noise ratio and prediction order in spatial demension.

  • PDF

A Comparison of the Discrimination of Business Failure Prediction Models (부실기업예측모형의 판별력 비교)

  • 최태성;김형기;김성호
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.27 no.2
    • /
    • pp.1-13
    • /
    • 2002
  • In this paper, we compares the business failure prediction accuracy among Linear Programming Discriminant Analysis(LPDA) model, Multivariate Discriminant Analysis (MDA) model and logit analysis model. The Data for 417 companies analyzed were gathered from KIS-FAS Published by Korea Information Service in 1999. The result of comparison for four time horizons shows that LPDA Is advantageous in prediction accuracy over the other two models when over all tilt ratio and business failure accuracy are considered simultaneously.

Prediction of Pitting Corrosion Characteristics of AL-6XN Steel with Sensitization and Environmental Variables Using Multiple Linear Regression Method (다중선형회귀법을 활용한 예민화와 환경변수에 따른 AL-6XN강의 공식특성 예측)

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.302-309
    • /
    • 2020
  • This study aimed to predict the pitting corrosion characteristics of AL-6XN super-austenitic steel using multiple linear regression. The variables used in the model are degree of sensitization, temperature, and pH. Experiments were designed and cyclic polarization curve tests were conducted accordingly. The data obtained from the cyclic polarization curve tests were used as training data for the multiple linear regression model. The significance of each factor in the response (critical pitting potential, repassivation potential) was analyzed. The multiple linear regression model was validated using experimental conditions that were not included in the training data. As a result, the degree of sensitization showed a greater effect than the other variables. Multiple linear regression showed poor performance for prediction of repassivation potential. On the other hand, the model showed a considerable degree of predictive performance for critical pitting potential. The coefficient of determination (R2) was 0.7745. The possibility for pitting potential prediction was confirmed using multiple linear regression.

LP-Based SNR Estimation with Low Computation Complexity (낮은 계산 복잡도를 갖는 Linear Prediction 기반의 SNR 추정 기법)

  • Kim, Seon-Ae;Jo, Byung-Gak;Baek, Gwang-Hoon;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1287-1296
    • /
    • 2009
  • It is very important to estimate the Signal to Noise Ratio(SNR) of received signal in time varying channel state. Most SNR estimation techniques derive the SNR estimates solely from the samples of the received signal after the matched filter. In the severe distorted wireless channel, the performance of these estimators become unstable and degraded. LP-based SNR estimator which can operate on data samples collected at the front-end of a receiver shows more stable performance than other SNR estimator. In this paper, we study an efficient SNR estimation algorithm based on LP and propose a new estimation method to decrease the computation complexity. Proposed algorithm accomplishes the SNR estimation process efficiently because it uses the forward prediction error and its conjugate value during the linear prediction error update. Via the computer simulation, the performance of this proposed estimation method is compared and discussed with other conventional SNR estimators in digital communication channels.

Improving the prediction accuracy by using the number of neighbors in collaborative filtering (협력적 필터링 추천기법에서 이웃 수를 이용한 선호도 예측 정확도 향상)

  • Lee, Hee-Choon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.3
    • /
    • pp.505-514
    • /
    • 2009
  • The researcher analyzes the relationship between the number of neighbors and the prediction accuracy in the preference prediction process using collaborative filtering system. The number of neighbors who are involved in the preference prediction process are divided into four groups. Each group shows a little difference in the preference prediction. By using prediction error averages in each group, linear functions are suggested. Through the result of this study, the accuracy of preference prediction can be raised when using linear functions by using the number of neighbors in the suggested system.

  • PDF

Improved Single-Tone Frequency Estimation by Averaging and Weighted Linear Prediction

  • So, Hing Cheung;Liu, Hongqing
    • ETRI Journal
    • /
    • v.33 no.1
    • /
    • pp.27-31
    • /
    • 2011
  • This paper addresses estimating the frequency of a cisoid in the presence of white Gaussian noise, which has numerous applications in communications, radar, sonar, and instrumentation and measurement. Due to the nonlinear nature of the frequency estimation problem, there is threshold effect, that is, large error estimates or outliers will occur at sufficiently low signal-to-noise ratio (SNR) conditions. Utilizing the ideas of averaging to increase SNR and weighted linear prediction, an optimal frequency estimator with smaller threshold SNR is developed. Computer simulations are included to compare its mean square error performance with that of the maximum likelihood (ML) estimator, improved weighted phase averager, generalized weighted linear predictor, and single weighted sample correlator as well as Cramer-Rao lower bound. In particular, with smaller computational requirement, the proposed estimator can achieve the same threshold and estimation performance of the ML method.

Linear Prediction Approach for Accurate Dual-Channel Sine-Wave Parameter Estimation in White Gaussian Noise

  • So, Hing-Cheung;Zhou, Zhenhua
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.641-644
    • /
    • 2012
  • The problem of sinusoidal parameter estimation at two channels with common frequency in white Gaussian noise is addressed. By making use of the linear prediction property, an iterative linear least squares (LLS) algorithm for accurate frequency estimation is devised. The remaining parameters are then determined according to the LLS fit with the use of the frequency estimate. It is proven that the variance of the frequency estimate achieves Cram$\acute{e}$r-Rao lower bound at sufficiently small noise conditions.

Distributed Fusion Moving Average Prediction for Linear Stochastic Systems

  • Song, Il Young;Song, Jin Mo;Jeong, Woong Ji;Gong, Myoung Sool
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.88-93
    • /
    • 2019
  • This paper is concerned with distributed fusion moving average prediction for continuous-time linear stochastic systems with multiple sensors. A distributed fusion with the weighted sum structure is applied to the optimal local moving average predictors. The distributed fusion prediction algorithm represents the optimal linear fusion by weighting matrices under the minimum mean square criterion. The derivation of equations for error cross-covariances between the local predictors is the key of this paper. Example demonstrates effectiveness of the distributed fusion moving average predictor.

Optimized Neural Network Weights and Biases Using Particle Swarm Optimization Algorithm for Prediction Applications

  • Ahmadzadeh, Ezat;Lee, Jieun;Moon, Inkyu
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1406-1420
    • /
    • 2017
  • Artificial neural networks (ANNs) play an important role in the fields of function approximation, prediction, and classification. ANN performance is critically dependent on the input parameters, including the number of neurons in each layer, and the optimal values of weights and biases assigned to each neuron. In this study, we apply the particle swarm optimization method, a popular optimization algorithm for determining the optimal values of weights and biases for every neuron in different layers of the ANN. Several regression models, including general linear regression, Fourier regression, smoothing spline, and polynomial regression, are conducted to evaluate the proposed method's prediction power compared to multiple linear regression (MLR) methods. In addition, residual analysis is conducted to evaluate the optimized ANN accuracy for both training and test datasets. The experimental results demonstrate that the proposed method can effectively determine optimal values for neuron weights and biases, and high accuracy results are obtained for prediction applications. Evaluations of the proposed method reveal that it can be used for prediction and estimation purposes, with a high accuracy ratio, and the designed model provides a reliable technique for optimization. The simulation results show that the optimized ANN exhibits superior performance to MLR for prediction purposes.