• 제목/요약/키워드: Linear Matrix Inequality$L_2$-gain

검색결과 12건 처리시간 0.023초

제어입력 크기제한을 갖는 시스템에서 이득 스케쥴 상태되먹임-외란앞먹임 제어 (Gain Scheduled State Feedback and Disturbance Feedforward Control for Systems with Bounded Control Input)

  • 강민식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.915-920
    • /
    • 2007
  • A new optimal state feedback and disturbance feedforward control design in the sense of minimizing $L_{2}-gain$ from disturbance to control output is proposed for disturbance attenuation of systems with bounded control input and measurable disturbance. The controller is derived in the framework of linear matrix inequality(LMI) optimization. A gain scheduled state feedback and disturbance feedforward control design is also suggested to improve disturbance attenuation performance. The control gains are scheduled according to the proximity to the origin of the state of the plant and the magnitude of disturbance. This procedure yields a stable linear time varying control structure that allows higher gain and hence higher performance controller as the state and the disturbance move closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition.

  • PDF

제어입력 크기제한을 갖는 시스템에서 이득 스케줄 상태되먹임-외란앞먹임 제어 - 이론 (Gain Scheduled State Feedback and Disturbance Feedforward Control for Systems with Bounded Control Input - Theory)

  • 강민식
    • 한국정밀공학회지
    • /
    • 제24권11호
    • /
    • pp.59-65
    • /
    • 2007
  • A new optimal state feedback and disturbance feedforward control design in the sense of minimizing $L_2$-gain from disturbance to control output is proposed for disturbance attenuation of systems with bounded control input and measurable disturbance. The controller is derived in the framework of linear matrix inequality(LMI) optimization. A gain scheduled state feedback and disturbance feedforward control design is also suggested to improve disturbance attenuation performance. The control gains are scheduled according to the proximity to the origin of the state of the plant and the magnitude of disturbance. This procedure yields a stable linear time varying control structure that allows higher gain and hence higher performance controller as the state and the disturbance move closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition.

제어입력 크기제한을 갖는 시스템에서 외란 응답 감소를 위한 이산시간 이득 스케줄 제어 (Gain Scheduled Discrete Time Control for Disturbance Attenuation of Systems with Bounded Control Input)

  • 강민석;윤우현
    • 한국정밀공학회지
    • /
    • 제26권3호
    • /
    • pp.32-39
    • /
    • 2009
  • A new discrete time gain-scheduled control design is proposed to improve disturbance attenuation for systems with bounded control input under known disturbance maximum norm. The state feedback gains are scheduled according to the proximity of the state of the plant to the origin. The controllers are derived in the framework of linear matrix inequality(LMI) optimization. This procedure yields a linear time varying control structure that allows higher gain and hence higher performance controllers as the state moves closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition under the given disturbance maximum norm.

제어입력 크기제한을 갖는 시스템에서 외란 응답 감소를 위한 이득 스케쥴 제어 - 이론 (Gain Scheduled Control for Disturbance Attenuation of Systems with Bounded Control Input - Theory)

  • 강민식
    • 한국정밀공학회지
    • /
    • 제23권6호
    • /
    • pp.81-87
    • /
    • 2006
  • A new gain-scheduled control design is proposed to improve disturbance attenuation for systems with bounded control input. The state feedback controller is scheduled according to the proximity to the origin of the state of the plant. The controllers is derived in the framework of linear matrix inequality(LMI) optimization. This procedure yields a linear time varying control structure that allows higher gain and hence higher performance controllers as the state move closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition.

Well-Conditioned 관측기 설계 - A Linear Matrix Inequality Approach - (Design of the Well-Conditioned Observer - A Linear Matrix Inequality Approach -)

  • 정종철;허건수
    • 대한기계학회논문집A
    • /
    • 제28권5호
    • /
    • pp.503-510
    • /
    • 2004
  • In this paper, the well-conditioned observer for a stochastic system is designed so that the observer is less sensitive to the ill-conditioning factors in transient and steady-state observer performance. These factors include not only deterministic uncertainties such as unknown initial estimation error, round-off error, modeling error and sensing bias, but also stochastic uncertainties such as disturbance and sensor noise. In deterministic perspectives, a small value in the L$_{2}$ norm condition number of the observer eigenvector matrix guarantees robust estimation performance to the deterministic uncertainties. In stochastic viewpoints, the estimation variance represents the robustness to the stochastic uncertainties and its upper bound can be minimized by reducing the observer gain and increasing the decay rate. Both deterministic and stochastic issues are considered as a weighted sum with a LMI (Linear Matrix Inequality) formulation. The gain in the well-conditioned observer is optimally chosen by the optimization technique. Simulation examples are given to evaluate the estimation performance of the proposed observer.

LMI를 이용한 Well-Conditioned 관측기 설계 (Well-Conditioned Observer Design via LMI)

  • 허건수;정종철
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.21-26
    • /
    • 2003
  • The well-conditioned observer in a stochastic system is designed so that the observer is less sensitive to the ill-conditioning factors in transient and steady-state observer performance. These factors include not only deterministic issues such as unknown initial estimation error, round-off error, modeling error and sensing bias, but also stochastic issues such as disturbance and sensor noise. In deterministic perspectives, a small value in the L$_2$ norm condition number of the observer eigenvector matrix guarantees robust estimation performance to the deterministic issues and its upper bound can be minimized by reducing the observer gain and increasing the decay rate. Both deterministic and stochastic issues are considered as a weighted sum with a LMI (Linear Matrix Inequality) formulation. The gain in the well-conditioned observer is optimally chosen by the optimization technique. Simulation examples are given to evaluate the estimation performance of the proposed observer.

  • PDF

포화 구동기를 갖는 선형 시스템의 $H_{\infty}$ 제어기 설계 ($H_{\infty}$ Controller Design of Linear Systems with Saturating Actuators)

  • 조현철;김진훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.494-496
    • /
    • 1999
  • In this paper, we consider the design of a state feedback $H_{\infty}$ controller for uncertain linear systems with saturating actuators. We consider a general saturating actuator and employ the additive decomposition to deal with it effectively. And the considered uncertainty is the unstructured uncertainty which is only known its norm bound. Based on Linear Matrix Inequality(LMI) techniques, we present a condition on designing a controller that guarantees the $L_2$ gain, from the noise to the output, is not greater than a given value. A controller is obtained by checking the feasibility of three LMI's, and this can be easily done by well-known control package. Finally, we show the usefulness of our result by a numerical example.

  • PDF

포화 구동기를 갖는 선형 시스템의 $H_{\infty}$ 제어기 설계 ($H_{\infty}$ Controller Design of Linear Systems with Saturating Actuators)

  • 조현철;김진훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.596-598
    • /
    • 1999
  • In this paper, we consider the design of a state feedback $H_{\infty}$ controller for linear systems with saturating actuators. We consider a general saturating actuator and employ the multiplicative decomposition to deal with it effectively. Based on Linear Matrix Inequality (LMI) techniques, we present a condition on designing a controller that guarantees the $L_2$ gain, from the noise to the output, is not greater than a given value. A controller is obtained by checking the feasibility of three LMI's, and this can be easily done by well-known control package. Finally, we show the usefulness of our result by a numerical example.

  • PDF

포화 구동기를 갖는 선형 시스템의H_{\infty}제어기 설계 (H_{\infty}Controller Design of Linear Systems with Saturating Actuators)

  • 조현철;김진훈
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권4호
    • /
    • pp.191-200
    • /
    • 2000
  • In practical applications, we frequently encounter the actuator nonlinearity in control systems, and its representative nonlinearity is saturation. A controller designed without considering this saturation nonlinearity is often a source of degradation of performance. To treat the saturation nonlinearity more efficiently, we adopt the multiplicative decomposition and the additive decomposition. Based on these decompositions, we present two controller design methods in the LMI(Linear Matrix Inequality) form that guarantee the L2 gain, from the disturbance to the measured output, is less than or equal to a given value. Finally, we give two examples to show the applicability and usefulness of our results.

  • PDF