• Title/Summary/Keyword: Linear Inflow Model

Search Result 47, Processing Time 0.031 seconds

Development of an Unsteady Aerodynamic Analysis Module for Rotor Comprehensive Analysis Code

  • Lee, Joon-Bae;Yee, Kwan-Jung;Oh, Se-Jong;Kim, Do-Hyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.23-33
    • /
    • 2009
  • The inherent aeromechanical complexity of a rotor system necessitated the comprehensive analysis code for helicopter rotor system. In the present study, an aerodynamic analysis module has been developed as a part of rotorcraft comprehensive program. Aerodynamic analysis module is largely classified into airload calculation routine and inflow analysis routine. For airload calculation, quasi-steady analysis model is employed based on the blade element method with the correction of unsteady aerodynamic effects. In order to take unsteady effects - body motion effects and dynamic stall - into account, aerodynamic coefficients are corrected by considering Leishman-Beddoes's unsteady model. Various inflow models and vortex wake models are implemented in the aerodynamic module to consider wake induced inflow. Specifically, linear inflow, dynamic inflow, prescribed wake and free wake model are integrated into the present module. The aerodynamic characteristics of each method are compared and validated against available experimental data such as Elliot's induced inflow distribution and sectional normal force coefficients of AH-1G. In order to validate unsteady aerodynamic model, 2-D unsteady model for NACA0012 airfoil is validated against aerodynamic coefficients of McAlister's experimental data.

Development of an Aerodynamic Performance Analysis Module for Rotorcraft Comprehensive Analysis Code (회전익기 통합해석프로그램을 위한 공력해석코드 개발)

  • Lee, Joon-Bae;Lee, Jae-Won;Yee, Kwan-Jung;Oh, Se-Jong;Kim, Deog-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.224-231
    • /
    • 2009
  • In this study, an aerodynamic performance analysis code has been developed as a part of rotorcraft comprehensive program. Airloads on rotor blades are calculated based on the blade element theory with look-up tables of aerodynamic coefficients of 2-D airfoils. In order to calculate rotor induced inflow, various inflow prediction methods such as linear inflow, dynamic inflow, prescribed wake and free wake model are integrated into the present module. The aerodynamic characteristics of each method are compared and validated against available experimental data such as Elliot's inflow distribution and sectional normal force coefficients of AH-1G.

Hydraulic Flood Routing using Linear Reservoir Model (선형저수지모형을 적용한 수리학적 홍수추적)

  • Jeon, Min-Woo;Cho, Young-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.787-796
    • /
    • 2002
  • Hydraulic flood routing was performed for unsteady flow in a natural river using Preissmann scheme. A Log-Pearson Type-Ⅲ hydrograph is chosen arbitrarily as the upstream boundary condition and lateral inflow hydrographs for sensitivity analysis. For the application with an actual river system, upstream and lateral inflow hydrographs were estimated by the linear reservoir model and the Manning's equation was used as the downstream boundary condition. The unsteady flow model using the linear reservoir model as the inflow hydrographs was applied to Bochung stream basin and gives good results, and is approved to be used for the runoff prediction. As results of the sensitivity analysis, the proposed model may help to estimate the roughness coefficients when using the unsteady flow model with lateral inflow combined with the linear reservoir model.

Aeroelastic Analysis of Rotorcraft in Forward Flight Using Dynamic Inflow Model (동적 유입류 모델을 이용한 회전익기 전진비행 공탄성 해석)

  • Lee, Joon-Bae;Yoo, Seung-Jae;Jeong, Min-Soo;Lee, In;Kim, Deog-Kwan;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.297-305
    • /
    • 2011
  • In this study, the aeroelastic analysis of rotorcraft in forward flight has been performed using dynamic inflow model to handle unsteady aerodynamics. The quasi-steady airload model based on the blade element method has been coupled with dynamic inflow model developed by Peters and He. The nonlinear steady response to periodic motion is obtained by integrating the full finite element equation in time through a coupled trim procedure with a vehicle trim for stability analysis. The aerodynamic and structural characteristics of dynamic inflow model are validated against other numerical analysis results by comparing induced inflow and blade tip deflections(flap, lag). In order to validate aeroelastic stability of dynamic inflow model, lag damping are also compared with those of linear inflow model.

Simulating Daily Inflow and Release Rates for Irrigation Reservoirs (1) -Modeling Inflow Rates by A Linear Reservoir Model- (관개용 저수지의 일별유입량과 방류량의 모의발생(I)-선형 저수지 모형에 의한 유입량의 추정-)

  • 김현영;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.1
    • /
    • pp.50-62
    • /
    • 1988
  • This study refers to the development of a hydrologic model simulating daily inflow and release rates for irrigation reservoirs. A daily - based model is needed for adequate operation of an irrigation reservoir sufficing the water demand for paddy fields which is closely related to meteorological conditions. Inflow rates to a reservoir need to be accurately described, which may be simulated using a hydrologic model from daily rainfall data. And the objective of this paper is to develop, test, and apply a hydrologic model for daily runoff simmulation. A well - known tank model was selected and modified to simulate daily inflow rates. The model parameters were calibrated using observed runoff data from twelve watersheds, Relationships between the parameters and the watershed characteristics were derived by a multiple regression analysis. The simulation results were in agreement with the data. The inflow model was found to simulate low flow conditions more accurately than high flow conditions, which may be adequate for water resources utilization.

  • PDF

Investigation on Prediction Methods for a Rotor Averaged Inflow in Forward Flight (전진비행하는 회전익기 로터의 평균 유입류 예측기법 연구)

  • Hwang, Chang-Jeon;Chung, Ki-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.124-129
    • /
    • 2007
  • Prediction methods for a rotor averaged inflow in forward flight are investigated in this study. The investigated methods are Drees linear inflow model, Mangler & Squire model and free vortex wake(FVW) method. Predictions have been performed for a four-blade rotor operating at three different advance ratios i.e. 0.15, 0.23 and 0.30, at which experimental data are available. According to results, Drees model has a limitation for the inflow non-uniformity prediction due to an inherent linear characteristics. Mangler & Squire model has a reasonable accuracy except the disk edge region. KARI FVW method has very good accuracy and has better accuracy than the other FVW method especially in inboard region. However, there are some discrepancies in retreating side due to the dynamic stall effect and in near hub region due to the fuselage upwash effect.

A Comparative Analysis between Inflow rate Maximizing and Outflow rate Maximizing for the Urban Expressway Ramp Metering (도시고속도로 램프미터링을 위한 진입극대화방안과 진출극대화방안의 비교 연구)

  • 이인원;김대호
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.4
    • /
    • pp.7-29
    • /
    • 1996
  • The optimal solution obtained by a linear programming model is to maximize the ramp inflow rate. It is argued in this paper that the maximization of inflow rate is different from the maximization of outflow rate under congested conditions. Therefore, this paper proposes a systematic searching procedure from a linear programing formulation to a integer programming : first obtain the optimal solution by a linear programming and then adding weight to linear programming then. solve the optimal solution again by integer programming i.e. The proposed method is an interactive approach. Measure of effectiveness by simulation models regards the real time data(O/D, queue, delay, etc), can be utilized in the proposed interactive process.

  • PDF

Derivation of Storage Coefficient and Concentration Time for Derivation of Lateral Inflow Hydrograph (측방 유입 수문곡선 유도를 위한 저류상수 및 집중시간의 유도)

  • Yoo, Chul-Sang;Kim, Ha-Young;Park, Chang-Yeol
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.3
    • /
    • pp.243-252
    • /
    • 2012
  • The objective of this study is to analyze lateral inflow hydrologically. The IUH of lateral inflow is sum of the impulse responses of total cells in basin. This IUH bases on the Muskingum channel routing method, which hydrologically re-analysed to represent it as a linear combination of the linear channel model considering only the translation and the linear reservoir model considering only the storage effect. Rectangular and triangular basins were used as imaginary basins and IUH of each basin were derived. The derived IUH have different characteristics with respect to basin's shape. The storage coefficient of lateral inflow was also derived mathematically using general definitions of concentration time and storage coefficient. As a result, the storage coefficient of lateral inflow could be calculated easily using basin's width, length and hydrological characteristics of channel.

Assessment of Future Climate Change Impact on DAM Inflow using SLURP Hydrologic Model and CA-Markov Technique

  • Kim, Seong-Joon;Lim, Hyuk-Jin;Park, Geun-Ae;Park, Min-Ji;Kwon, Hyung-Joong
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.1
    • /
    • pp.25-33
    • /
    • 2008
  • To investigate the hydrologic impacts of climate changes on dam inflow for Soyanggangdam watershed $(2694.4km^2)$ of northeastern South Korea, SLURP (Semi-distributed Land Use-based Runoff Process) model and the climate change results of CCCma CGCM2 based on SRES A2 and B2 were adopted. By the CA-Markov technique, future land use changes were estimated using the three land cover maps (1985, 1990, 2000) classified by Landsat TM satellite images. NDVI values for 2050 and 2100 land uses were estimated from the relationship of NDVI-Temperature linear regression derived from the observed data (1998-2002). Before the assessment, the SLURP model was calibrated and verified using 4 years (1998-2001) dam inflow data with the Nash-Sutcliffe efficiencies of 0.61 to 0.77. In case of A2 scenario, the dam inflows of 2050 and 2100 decreased 49.7 % and 25.0 % comparing with the dam inflow of 2000, and in case of B2 scenario, the dam inflows of 2050 and 2100 decreased 45.3 % and 53.0 %, respectively. The results showed that the impact of land use change covered 2.3 % to 4.9 % for the dam inflow change.

Development of Han River Multi-Reservoir Operation Rules by Linear Tracking (선형추적에 의한 한강수계 복합 저수지 계통의 이수 조작기준 작성)

  • Yu, Ju-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.6
    • /
    • pp.733-744
    • /
    • 2000
  • Due to the randomness of reservoir inflow and supply demand it is not easy to establish an optimal reservoir operation rule. However, the operation rule can be derived by the implicit stochastic optimization approach using synthetic inflow data with some demand satisfied. In this study the optimal reservoir operation which was reasonably formulated as Linear Tracking model for maximizing the hydro-energy of seven reservoirs system in the Han river was performed by use of the optimal control theory. Here the operation model made to satisfy the 2001st year demand in the capital area inputted the synthetic inflow data generated by multi-site Markov model. Based on the regressions and statistic analyses of the optimal operation results, monthly reservoir operation rules were developed with the seasonal probabilities of the reservoir stages. The comparatively larger dams which would have more controllability such as Hwacheon, Soyanggang, and Chungju had better regressions between the storages and outflows. The effectiveness of the rules was verified by the simulation during actually operating period.period.

  • PDF