• 제목/요약/키워드: Linear Elastic System

검색결과 285건 처리시간 0.025초

Capacity spectrum method based on inelastic spectra for high viscous damped buildings

  • Bantilas, Kosmas E.;Kavvadias, Ioannis E.;Vasiliadis, Lazaros K.
    • Earthquakes and Structures
    • /
    • 제13권4호
    • /
    • pp.337-351
    • /
    • 2017
  • In the present study a capacity spectrum method based on constant ductility inelastic spectra to estimate the seismic performance of structures equipped with elastic viscous dampers is presented. As the definition of the structures' effective damping, due to the damping system, is necessary, an alternative method to specify the effective damping ratio ${\xi}eff$ is presented. Moreover, damping reduction factors (B) are introduced to generate high damping elastic demand spectra. Given the elastic spectra for damping ratio ${\xi}eff$, the performance point of the structure can be obtained by relationships that relate the strength demand reduction factor (R) with the ductility demand factor (${\mu}$). As such expressions that link the above quantities, known as R - ${\mu}$ - Τ relationships, for different damping levels are presented. Moreover, corrective factors (Bv) for the pseudo-velocity spectra calculation are reported for different levels of damping and ductility in order to calculate with accuracy the values of the viscous dampers velocities. Finally, to evaluate the results of the proposed method, the whole process is applied to a four-storey reinforced concrete frame structure and to a six-storey steel structure, both equipped with elastic viscous dampers.

Vibration analysis thermally affected viscoelastic nanosensors subjected to linear varying loads

  • Ebrahimi, Farzad;Babaei, Ramin;Shaghaghi, Gholam Reza
    • Advances in nano research
    • /
    • 제6권4호
    • /
    • pp.399-422
    • /
    • 2018
  • Unwanted vibration is an issue in many industrial systems, especially in nano-devices. There are many ways to compensate these unwanted vibrations based on the results of the past researches. Elastic medium and smart material etc. are effective methods to restrain unnecessary vibration. In this manuscript, dynamic analysis of viscoelastic nanosensor which is made of functionally graded (FGM) nanobeams is investigated. It is assumed that, the shaft is flexible. The system is modeled based on Timoshenko beam theory and also environmental condition, external linear varying loads and thermal loading effect are considered. The equations of motion are extracted by using energy method and Hamilton principle to describe the translational and shear deformation's behavior of the system. Governing equations of motion are extracted by supplementing Eringen's nonlocal theory. Finally vibration behavior of system especially the frequency of system is developed by implementation Semi-analytical differential transformed method (DTM). The results are validated in the researches that have been done in the past and shows good agreement with them.

아스팔트 포장하부구조 층모델 결정에 관한 연구 (A Parameter Study of Stuctural Respanse Model in Flexible Pavement Substucture Layers)

  • 최준성;서주원
    • 한국도로학회논문집
    • /
    • 제5권4호
    • /
    • pp.13-22
    • /
    • 2003
  • 국내의 경우 도로포장설계시 외국의 설계법을 단순히 도입하여 사용하고 있지만 건설재료,기후 및 교통조건 등이 외국과 상이하기 때문에 근본적 인 제한성이 있다. 특히, 국내 포장구조해석에서 아스팔트층 거동특성만을 중요시하는 해석은 포장구조체가 각 층의 영향을 받는 종합적인 거동특성을 보인다는 포장구조체 시스템적인 특성을 고려한다면 많은 문제점을 내포하고 있다. 따라서, 도로포장 설계시 합리적이고 경제적인 설계를 할 수 있도록 포장구조체의 해석 시스템을 구축하여야 한다. 본 연구에서는 비선형성이 포장체에 미치는 영향을 알아보기 위한 수치해석의 기본작업으로 다층구조상태인 포장체의 거동해석에 영향을 미치는 두께와 탄성계수 조합으로 구성된 243개의 표준단면과 하중종류에 따른 영향을 분석하여 응력의 변화분포가 큰 경우를 해석단면으로 결정하였다. 분석결과 탄성계수보다 층 두께의 영향이 더 큼을 알 수 있었다. 또한. 하중의 경우 원형등 분포하중인 정적하중과 FWD 시험하중을 비교한 결과 FWD 시험하중의 응력분포가 더 큼을 알 수 있었다. 결정된 해석단면을 이용하여 포장하부의 재료적 특성을 대변하는 비선형탄성모델을 각 층별로 적용시켜 기존의 선형탄성모델을 이용한 해석결과와 비교 분석한 결과 포장하부시스템 중 보조기층에서는 지반내 응력상태를 반영할 수 있는 비선형모델을 고려해야 하는 것이 보다 합리적임을 알 수 있었다.

  • PDF

Energy harvesting from piezoelectric strips attached to systems under random vibrations

  • Trentadue, Francesco;Quaranta, Giuseppe;Maruccio, Claudio;Marano, Giuseppe C.
    • Smart Structures and Systems
    • /
    • 제24권3호
    • /
    • pp.333-343
    • /
    • 2019
  • The possibility of adopting vibration-powered wireless nodes has been largely investigated in the last years. Among the available technologies based on the piezoelectric effect, the most common ones consist of a vibrating beam covered by electroactive layers. Another energy harvesting strategy is based on the use of piezoelectric strips attached to a hosting structure subjected to dynamic loads. The hosting structure, for example, can be the system to be equipped with wireless nodes. Such strategy has received few attentions so far and no analytical studies have been presented yet. Hence, the original contribution of the present paper is concerned with the development of analytical solutions for the electrodynamic analysis and design of piezoelectric polymeric strips attached to relatively large linear elastic structural systems subjected to random vibrations at the base. Specifically, it is assumed that the dynamics of the hosting structure is dominated by the fundamental vibration mode only, and thus it is reduced to a linear elastic single-degree-of-freedom system. On the other hand, the random excitation at the base of the hosting structure is simulated by filtering a white Gaussian noise through a linear second-order filter. The electromechanical force exerted by the polymeric strip is negligible compared with other forces generated by the large hosting structure to which it is attached. By assuming a simplified electrical interface, useful new exact analytical expressions are derived to assess the generated electric power and the integrity of the harvester as well as to facilitate its optimum design.

하중경계조건의 변화에 대한 선형탄성문제의 민감도 해석 (Sensitivity Analysis of Linear Elastic Problem due to Variations of the Traction Boundary Conditions)

  • 이태원
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.1852-1860
    • /
    • 1991
  • 본 연구에서는 연구대상을 주어진 구조물 형상에서 경계조건의 변화에 따른 현상 설계민감도, 특히 하중경계조건의 변화에 따른 구조물의 변형에 주안점을 두었다. 이 연구결과는 가공물의 지지위치에 따른 가공면의 변형정도 향상 및 접촉문제 해석등 에 응용이 가능하다. 유도된 민감도가 정확함을 입증하기 위하여 예제로서 하중경계 조건의 변화에 따른 범함수로 정의된 변형의 변화량을 예측하는 문제를 선정하였다.

Shape Optimization of the H-shape Spacer Grid Spring Structure

  • Yoon, Kyung-Ho;Kim, Hyung-Kyu;Kang, Heung-Seok;Song, Kee-Nam;Park, Ki-Jong
    • Nuclear Engineering and Technology
    • /
    • 제33권5호
    • /
    • pp.547-555
    • /
    • 2001
  • In pressurized light water reactor fuel assembly, spacer grids support nuclear fuel rods both laterally and vertically. The fuel rods are supported by spacer grid springs and grid dimples that are located in the grid cell. The support system allows for some thermal expansion and imbalance of the fuel rods. The imbalance is absorbed by elastic energy to prevent coolant flow- induced vibration damage. Design requirements are defined and a design process is established. The design process includes mathematical optimization as well as practical design method. The shape of the grid spring is designed to maintain its function during the lifetime of the fuel assembly. A structural optimization method is employed for the shape design. Since the optimization is carried out in the linear range of finite element analysis, the optimum solution is verified by nonlinear analysis. A good design is found and the final design is compared with the initial conceptual design. Commercial codes are utilized for structural analysis and optimization.

  • PDF

Passive p-y curves for rigid basement walls supporting granular soils

  • Imad, Elchiti;George, Saad;Shadi S., Najjar
    • Geomechanics and Engineering
    • /
    • 제32권3호
    • /
    • pp.335-346
    • /
    • 2023
  • For structures with underground basement walls, the soil-structure-interaction between the side soil and the walls affects the response of the system. There is interest in quantifying the relationship between the lateral earth pressure and the wall displacement using p-y curves. To date, passive p-y curves in available limited studies were assumed elastic-perfectly plastic. In reality, the relationship between earth pressure and wall displacement is complex. This paper focuses on studying the development of passive p-y curves behind rigid walls supporting granular soils. The study aims at identifying the different components of the passive p-y relationship and proposing a rigorous non-linear p-y model in place of simplified elastic-plastic models. The results of the study show that (1) the p-y relationship that models the stress-displacement response behind a rigid basement wall is highly non-linear, (2) passive p-y curves are affected by the height of the wall, relative density, and depth below the ground surface, and (3) passive p-y curves can be expressed using a truncated hyperbolic model that is defined by a limit state passive pressure that is determined using available logarithmic spiral methods and an initial slope that is expressed using a depth-dependent soil stiffness model.

Rigid block coupled with a 2 d.o.f. system: Numerical and experimental investigation

  • Pagliaro, Stefano;Aloisio, Angelo;Alaggio, Rocco;Di Egidio, Angelo
    • Coupled systems mechanics
    • /
    • 제9권6호
    • /
    • pp.539-562
    • /
    • 2020
  • In this paper the linear elastic coupling between a 2 degree of freedom shear-type frame system and a rigid block is analytically and experimentally investigated. As demonstrated by some of the authors in previous papers, it is possible to choose a coupling system able to guarantee advantages, whatever the mechanical characteristics of the frame. The main purpose of the investigation is to validate the analytical model. The nonlinear equations of motion of the coupled system are obtained by a Lagrangian approach and successively numerically integrated under harmonic and seismic excitation. The results, in terms of gain graphs, maps and spectra, represent the ratio between the maximum displacements or drifts of the coupled and uncoupled systems as a function of the system's parameters. Numerical investigations show the effectiveness of the nonlinear coupling for a large set of parameters. Thus experimental tests are carried out to verify the analytical results. An electro-dynamic long-stroke shaker sinusoidally and seismically forces a shear-type 2 d.o.f frame coupled with a rigid aluminium block. The experimental investigations confirm the effectiveness of the coupling as predicted by the analytical model.

A method for the non-linear and failure load analysis of reinforced concrete frames

  • Cosgun, Turgay;Sayin, Baris
    • Computers and Concrete
    • /
    • 제14권1호
    • /
    • pp.41-57
    • /
    • 2014
  • Modern trend in structural design is to use smaller elements in order to ensure several purposes such as economy, functionality and aesthetic in appearance. However, because of decreasing rigidity of the structural elements, the system displacements increases and displacements become an important subject in this kind of structures takes into account both geometrical changes and the carrying capacity of the material after linear-elastic boundary. In this study, a method is proposed to calculate the failure loads and to analyse the reinforced concrete space frame systems. The numerical examples gathered from the literature survey are solved with this method utilising the prepared computer program and the comparable results are presented. The results show that the method is sufficiently accurate.

Effect of sequential earthquakes on evaluation of non-linear response of 3D RC MRFs

  • Oggu, Praveen;Gopikrishna, K.
    • Earthquakes and Structures
    • /
    • 제20권3호
    • /
    • pp.279-293
    • /
    • 2021
  • Most of the existing seismic codes for RC buildings consider only a scenario earthquake for analysis, often characterized by the response spectrum at the specified location. However, any real earthquake event often involves occurrences of multiple earthquakes within a few hours or days, possessing similar or even higher energy than the first earthquake. This critically impairs the rehabilitation measures thereby resulting in the accumulation of structural damages for subsequent earthquakes after the first earthquake. Also, the existing seismic provisions account for the non-linear response of an RC building frame implicitly by specifying a constant response modification factor (R) in a linear elastic design. However, the 'R' specified does not address the changes in structural configurations of RC moment-resisting frames (RC MRFs) viz., building height, number of bays present, bay width, irregularities arising out of mass and stiffness changes, etc. resulting in changed dynamic characteristics of the structural system. Hence, there is an imperative need to assess the seismic performance under sequential earthquake ground motions, considering the adequacy of code-specified 'R' in the representation of dynamic characteristics of RC buildings. Therefore, the present research is focused on the evaluation of the non-linear response of medium-rise 3D RC MRFs with and without vertical irregularities under bi-directional sequential earthquake ground motions using non-linear dynamic analysis. It is evident from the results that collapse probability increases, and 'R' reduces significantly for various RC MRFs subjected to sequential earthquakes, pronouncing the vulnerability and inadequacy of estimation of design base shear by code-specified 'R' under sequential earthquakes.