• Title/Summary/Keyword: Linear Discrete-Time System

Search Result 297, Processing Time 0.026 seconds

A Design on Robust Model Following Servo System Using $\delta$--Operator ($\delta$-연산자를 이용한 강인한 모델 추종형 서보 제어 시스템의 구성에 관한연구)

  • Kim, Chung-Tek;Hwang, Hyun-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.2
    • /
    • pp.121-126
    • /
    • 2000
  • In the fast sampling limit the delta operator model tends to the analog system model. This fundamental property of the delta operator model unifies continuous and discrete time control system. In this paper we study robust linear optimal model following servo system in the presence of disturbances and parameter perturbations. A technique to directly design the generalized differential operator based unified control system that covers both differential operator based continuous time and delta operator based discrete time case is presented. The quadratic criterion function for a linear system is used to design the robust unified servo control system The characteristics of the proposed servo system are analysed and simulated to verify the robustness.

  • PDF

Robust Estimation Algorithm for Switching Signal and State of Discrete-time Switched Linear Systems (이산 시간 선형 스위치드 시스템의 스위칭 신호 및 상태에 대한 강인한 추정 알고리즘)

  • Lee, Chanhwa;Shim, Hyungbo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.214-221
    • /
    • 2015
  • In this paper, we present robust estimation and detection algorithms for discrete-time switched linear systems whose output measurements are corrupted by noises. First, a mode estimation algorithm is proposed based on the minimum distance criterion. Then, state variables are also observed under the active mode estimate. Second, a detection algorithm is constructed to detect the mode switching of the switched system. With the boundedness of measurement noise, the proposed estimation algorithm returns the exact active mode and approximate state information of the switched system. In addition, the detection algorithm can detect the switching time within a pre-determined time interval after the actual switching occurred.

A Design on Robust Model Following Servo System using $\delta$- Operator ($\delta$- 연산자를 이용한 강인한 모델 추종형 서보 시스템의 구성에 관한 연구)

  • Kim, Jeong-Taek;Lee, Hwa-Seok;Park, Seong-Jun;Chu, Yeong-Bae;Hwang, Hyeon-Jun;Lee, Yang-U;Park, Jun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.747-752
    • /
    • 1999
  • In the fast sampling limit, the delta operator model tends to the analog system model. This fundamental property of the delta operator model unifies continuous and discrete time control system. In this paper, we study robust linear optimal model following servo system in the presence of disturbances and parameter perturbations. A technique to directly design the generalized differential operator based unified control system that convers both differential operator based continuous time and delta operator based discrete time case is presented. The quadratic criterion function for a linear system is used to design the robust unified servo control. The characteristics of the proposed servo system are analysed and simulated to verify the robustness.

  • PDF

Intelligent Digital Redesign of Uncertain Nonlinear Systems Using Power Series (Power Series를 이용한 불확실성을 포함된 비선형 시스템의 지능형 디지털 재설계)

  • Sung, Hwa-Chang;Joo, Young-Hoon;Park, Jin-Bae;Kim, Do-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.496-498
    • /
    • 2005
  • This paper presents intelligent digital redesign method of global approach for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent the complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated linear operators to be matched. Also by using the power series, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the global state-matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMIs).

  • PDF

Guaranteed Cost Control for Discrete-time Linear Uncertain Systems with Time-varying Delay (시변 시간지연을 가지는 이산 선형 불확실성 시스템에 대한 보장 비용 제어)

  • Kim, Ki-Tae;Cho, Sang-Hyun;Lee, Sang-Kyung;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.6
    • /
    • pp.20-26
    • /
    • 2002
  • This paper deals with the guaranteed cost control problems for a class of discrete-time linear uncertain systems with time-varying delay. The uncertain systems under consideration depend on time-varying norm-bounded parameter uncertainties. We address the existence condition and the design method of the memoryless state feedback control law such that the closed loop system not only is quadratically stable but also guarantees an adequate level of performance for all admissible uncertainties. Through some changes of variables and Schur complement, It is shown that the sufficient condition can be rewritten as an LMI(linear matrix inequality) form in terms of all variables.

Stability Condition for Discrete Interval System with Unstructured Uncertainty and Time-Varying Delay Time (비구조화된 불확실성과 시변 지연 시간을 갖는 이산 구간 시스템의 안정조건)

  • Hyung-seok Han
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.551-556
    • /
    • 2021
  • In this paper, we deal with the stability condition of linear interval discrete systems with time-varying delays and unstructured uncertainty. For the interval discrete system which has interval matrix as its system matrices, time-varying delay time within some interval value and unstructured uncertainty which can include non-linearity and be expressed by only its magnitude, the stability condition is proposed. Compared with the previous result derived by using a upper bound solution of the Lyapunov equation, the new results are derived by the form of simple inequality based on Lyapunov stability condition and have the advantage of being more effective in stability application. Furthermore, the proposed stable conditions are very comprehensive and powerful, including the previously published stable conditions of various linear discrete systems. The superiority of the new condition is proven in the derivation process, and the utility and superiority of the proposed condition are examined through numerical example.

Stability of intervalwise receding horizon control for linear tie-varying systems

  • Ki, Ki-Baek;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.430-433
    • /
    • 1997
  • In this paper, an intervalwise receding horizon control (IRHC) is proposed which stabilizes linear continuous and discrete time-varying systems each other by means of a feedback control stemming from a receding horizon concept and a minimum quadratic cost. The results parallel those obtained for continuous [4],[9] and discrete time varying system [5],[15] each other.

  • PDF

Hydrologic Time Series Model by Transfer Function (대체함수에 의한 수문 시계열 모형)

  • 강관원;김주환
    • Water for future
    • /
    • v.24 no.3
    • /
    • pp.61-70
    • /
    • 1991
  • the relationships between rainfall and runoff are analyzed statistically and modelled using discrete linear transfer function, which can be shown with the relations between input and output in hydrologic system. The procedures of identification, estimation and diagnostic checking of model are proposed, and the suitabilith of assume model is determined by the statistics used in time series analysis.

  • PDF

SYNTHESIS OF DISCRETE TIME FLIGHT CONTROL SYSTEM USING NONLINEAR MODEL MATCHING

  • Aoi, Kazunari;Osa, Yasuhiro;Uchikado, Shigeru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.460-460
    • /
    • 2000
  • Until now various model matching systems have been proposed for linear system, but very little has been done for nonlinear system In this paper, a design method of discrete time flight control system using nonlinear model matching is proposed. This method is based on Hirschorn's algorithm and facilitates easy determination of the control law using the relationship, between the output and the input, which is obtained by the time shift of the output. Also as a result, this method is the extension of the linear model matching control system proposed by Wolovich, in which the control law is obtained by left-multiplying the output by the interactor matrix. At the end of paper, the proposed control system is applied to CCV flight control system of an aircraft and the feasibility of the proposed approach is shown by the numerical simulations.

  • PDF

New Stability Conditions for Positive Time-Varying Discrete Interval System with Interval Time-Varying Delay Time (구간 시변 지연시간을 갖는 양의 시변 이산 구간 시스템의 새로운 안정 조건)

  • Han, Hyung-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.5
    • /
    • pp.501-507
    • /
    • 2014
  • A dynamic system is called positive if any trajectory of the system starting from non-negative initial states remains forever non-negative for non-negative controls. In this paper, new sufficient conditions for asymptotic stability of the interval positive time-varying linear discrete-time systems with time-varying delay in states are considered. The considered time-varying delay time has an interval-like bound which has minimum and maximum delay time. The proposed conditions are established by using a solution bound of the Lyapunov equation and they are expressed by simple inequalities which do not require any complex numerical algorithms. An example is given to illustrate that the new conditions are simple and effective in checking stability for interval positive time-varying discrete systems.