• Title/Summary/Keyword: Linear Actuators

Search Result 248, Processing Time 0.023 seconds

Development of Automatic 3D Measurement System (3차원 자동 검사 시스템 개발)

  • Lee, Y.J.;Bae, J.I.;Hong, S.I.;Song, D.S.;Lee, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2849-2850
    • /
    • 2000
  • We developed an automatic 3D inspection system. The system consists of two parts one includes hardwares such as actuators. linear scales and a probe. etc. the other involves softwares for management and control of the system. Compared with existing 3D measurement systems. this system achieved automatically the inspection. This automatic inspection makes the system have some advantages to reduce a measurement time and to be easily used by operators.

  • PDF

Vibration control of hysteretic base-isolated structures: an LMI approach

  • Pozo, Francesc;Pujol, Gisela;Acho, Leonardo
    • Smart Structures and Systems
    • /
    • v.17 no.2
    • /
    • pp.195-208
    • /
    • 2016
  • Seismic isolation systems are essentially designed to preserve structural safety, prevent occupants injury and properties damage. An active saturated LMI-based control design is proposed to attenuate seismic disturbances in base-isolated structures under saturation actuators. Using a mathematical model of an eight-storied building structure, an active control algorithm is designed. Performance evaluation of the controller is carried out in a simplified model version of a benchmark building system, which is recognized as a state-of-the-art model for numerical experiments of structures under seismic perturbations. Experimental results show that the proposed algorithm is robust with respect to model and seismic perturbations. Finally, the performance indices show that the proposed controller behaves satisfactorily and with a reasonable control effort.

Vibration control of 3D irregular buildings by using developed neuro-controller strategy

  • Bigdeli, Yasser;Kim, Dookie;Chang, Seongkyu
    • Structural Engineering and Mechanics
    • /
    • v.49 no.6
    • /
    • pp.687-703
    • /
    • 2014
  • This paper develops a new nonlinear model for active control of three-dimensional (3D) irregular building structures. Both geometrical and material nonlinearities with a neuro-controller training algorithm are applied to a multi-degree-of-freedom 3D system. Two dynamic assembling motions are considered simultaneously in the control model such as coupling between torsional and lateral responses of the structure and interaction between the structural system and the actuators. The proposed control system and training algorithm of the structural system are evaluated by simulating the responses of the structure under the El-Centro 1940 earthquake excitation. In the numerical example, the 3D three-story structure with linear and nonlinear stiffness is controlled by a trained neural network. The actuator dynamics, control time delay and incident angle of earthquake are also considered in the simulation. Results show that the proposed control algorithm for 3D buildings is effective in structural control.

3-DOF Parallel Micromanipulator : Design Consideration (3차원 평형 마이크로조정장치 : 설계 고려사항)

  • Lee, Jeong-Ick;Lee, Dong-Chan;Han, Chang-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.13-22
    • /
    • 2008
  • For the accuracy correction of the micro-positioning industrial robot, micro-manipulator has been devised. The compliant mechanisms using piezoelectric actuators is necessary geometrically and structurally to be developed by the optimization approaches. The overall geometric advantage as the mechanical efficiencies of the mechanism are considered as objective functions, which respectively art the ratio of output displacement to input force, and their constraints are the vertical notion of supporting leg and the structural strength of manipulation. In optimizing the compliant mechanical amplifier, the sequential linear programming and an optimality criteria method are used for the geometrical dimensions of compliant bridges and flexure hinges. This paper presents the integrated design process which not only can maximize the mechanism feasibilities but also can ensure the positioning accuracy and sufficient workspace. Experiment and simulation are presented for validating the design process through the comparisons of the kinematical and structural performances.

Dynamical anti-reset windup method for saturating control systems with multiple controllers and multiloop configuration and its application to motor control systems (다중 제어기 및 다중 루우프로 구성된 포화제어시스템의 동적 리셋 와인드엎 방지 방법과 모터제어에의 응용)

  • Park, Jong-Gu;Park, Chong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.141-150
    • /
    • 1998
  • This paper presents a dynamical anti-reset windup (ARW) compensation method for saturating control systems with multiple controllers and/or multiloop configuration. By regarding the difference of controller states in the absence and presence of saturating actuators as an objective function, the dynamical compensator which minimizes the objective function is derived in an integrated fashion. The proposed dynamical compensator is a closed form of plant and controller parameters. The resulting dynamics of compensated controller reflects the linear closed-loop system. The proposed method guarantees total stability of the resulting system. The effectiveness of the proposed method is illustrated by applying it to a servo motor control system. The paper is an extension of the results in Park and Choi[1].

  • PDF

Harmonic Motion-based Simulator Design for Multipurpose Sports Simulation

  • Yang, Jeong-Yean
    • International journal of advanced smart convergence
    • /
    • v.4 no.2
    • /
    • pp.163-169
    • /
    • 2015
  • This study proposes a sports simulation device with various harmonics generation. The proposed system is composed of 6 degrees of freedom simulator devices and three types of sports simulation such as walking, snowboard, and jet-ski. In this research, every joint movement is designed with a crank-and-slider mechanism, which is efficient for generating continuous curvature smoothly. Contrary to the conventional spatial simulator with linear actuators, harmonics generation and its spatial combinations become the crucial issue in this research. The harmonic pattern in each joint is modelled for generating smooth curvatures that are also superposed for achieving overall motions. In addition, the targeted motions of sports simulations have different physical factors of periodic gait motion, frictionless surface, and buoyant effects, which are respectively designed by integrating three dimensional graphics information.

Development of Shape Measurement System using 3 Dimension (3차원을 이용한 형상측정기 개발)

  • Lee, M.H.;Park, K.S.;Bae, J.I.;Kim, J.K.;Ahn, D.S.;Song, D.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2628-2630
    • /
    • 2001
  • This paper developed a 3D inspection system. The system consists of two parts : one includes hardwares such as actuators, linear scales and a probe, etc. the other involves softwares for management and control of the system. Compared with existing 3D measurement systems, this system achieved automatically the inspection. This automatic inspection makes the system have some advantages to reduce a measurement time and to be easily used by operators.

  • PDF

Seismic response control of buildings with force saturation constraints

  • Ubertini, Filippo;Materazzi, A. Luigi
    • Smart Structures and Systems
    • /
    • v.12 no.2
    • /
    • pp.157-179
    • /
    • 2013
  • We present an approach, based on the state dependent Riccati equation, for designing non-collocated seismic response control strategies for buildings accounting for physical constraints, with particular attention to force saturation. We consider both cases of active control using general actuators and semi-active control using magnetorheological dampers. The formulation includes multi control devices, acceleration feedback and time delay compensation. In the active case, the proposed approach is a generalization of the classic linear quadratic regulator, while, in the semi-active case, it represents a novel generalization of the well-established modified clipped optimal approach. As discussed in the paper, the main advantage of the proposed approach with respect to existing strategies is that it allows to naturally handle a broad class of non-linearities as well as different types of control constraints, not limited to force saturation but also including, for instance, displacement limitations. Numerical results on a typical building benchmark problem demonstrate that these additional features are achieved with essentially the same control effectiveness of existing saturation control strategies.

3D Modeling and Balancing Control of Two-link Underactuated Robots using Matlab/Simulink

  • Yoo, Dong Sang
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.4
    • /
    • pp.255-260
    • /
    • 2019
  • A pendubot is a representative example of an underactuated system that has fewer actuators than the degree of freedom of the system. In this study, the characteristics of the pendubot are first reviewed; each part is then designed using Solidworks by dividing the pendubot into three parts: the base frame, first link frame, and second link frame. These three parts are then imported into the Simulink environment via a STEP file format, which is the standard protocol used in data exchange between CAD applications. A 3D model of the pendubot is then constructed using Simscape, and the usefulness of the 3D model is validated by a comparison with a dynamic equation derived using the Lagrangian formulation. A linearized model around an upright equilibrium position is finally obtained, and a sliding mode controller is designed based on the linear quadratic regulator. Simulation results showed that the designed controller effectively maintained upright balance of the pendubot in the presence of disturbance.

Development of Automatic 3D Measurement System for Molding Inspection (금형 부품 검사를 위한 3차원 측정기 개발)

  • Eom, S.I.;Lee, Y.J.;Song, D.S.;Bae, J.I.;Lee, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3070-3072
    • /
    • 1999
  • We developed an automatic 3D inspection system. The system consists of two parts : one includes hardwares such as actuators, linear scales and a probe, etc. the other involves softwares for management and control of the system. Compared with existing 3D measurement systems, this system achieved automatically the inspection. This automatic inspection makes the system have some advantages to reduce a measurement time and to be easily used by operators.

  • PDF