• 제목/요약/키워드: Linear Actuators

검색결과 247건 처리시간 0.025초

저전압 대회전을 위한 분리된 압전 구동기에 의한 미소거울 (Micromirrors Driven by Detached Piezoelectric Microactuators For Low-voltage and Wide-angle Rotation)

  • 김성진;진영현;이원철;남효진;부종욱;조영호
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권3호
    • /
    • pp.149-155
    • /
    • 2006
  • This paper presents a torsional micromirror detached from PZT actuators (TMD), whose rotational motion is achieved by push bars in the PZT actuators detached from the micromirror. The push bar mechanism is intended to reduce the bending, tensile and torsional constraints generated by the conventional bending bar mechanism, where the torsional micromirror is attached to the PZT actuators (TMA). We have designed, fabricated and tested prototypes of TMDs for single-axis and dual-axis rotation, respectively. The single-axis TMD generates the static rotational angle of $6.1^{\circ}$ at 16 VDC, which is 6 times larger than that of single-axis TMA, $0.9^{\circ}$. However, the rotational response curve of TMD shows hysteresis due to the static friction between the cover and the push bar in the PZT actuator. We have shown that 63.2% of the hysteresis is due to the static friction caused by the initial contact force of the PZT actuaor. Without the initial contact force, the rotational response curve of TMD shows linear voltage-angle characteristics. The dual-axis TMD generates the static rotational angles of $5.5^{\circ}$ and $4.7^{\circ}$ in x-axis and y-axis, respectively at 16 VDC. The measured resonant frequencies of dual-axis TMD are $2.1\pm0.1$ kHz in x-axis and $1.7\pm0.1$ kHz in y-axis. The dual-axis TMD shows stable operation without severe wear for 21.6 million cycles driven by 16 Vp-p sinusoidal wave signal at room temperature.

Performance validation and application of a mixed force-displacement loading strategy for bi-directional hybrid simulation

  • Wang, Zhen;Tan, Qiyang;Shi, Pengfei;Yang, Ge;Zhu, Siyu;Xu, Guoshan;Wu, Bin;Sun, Jianyun
    • Smart Structures and Systems
    • /
    • 제26권3호
    • /
    • pp.373-390
    • /
    • 2020
  • Hybrid simulation (HS) is a versatile tool for structural performance evaluation under dynamic loads. Although real structural responses are often multiple-directional owing to an eccentric mass/stiffness of the structure and/or excitations not along structural major axes, few HS in this field takes into account structural responses in multiple directions. Multi-directional loading is more challenging than uni-directional loading as there is a nonlinear transformation between actuator and specimen coordinate systems, increasing the difficulty of suppressing loading error. Moreover, redundant actuators may exist in multi-directional hybrid simulations of large-scale structures, which requires the loading strategy to contain ineffective loading of multiple actuators. To address these issues, lately a new strategy was conceived for accurate reproduction of desired displacements in bi-directional hybrid simulations (BHS), which is characterized in two features, i.e., iterative displacement command updating based on the Jacobian matrix considering nonlinear geometric relationships, and force-based control for compensating ineffective forces of redundant actuators. This paper performs performance validation and application of this new mixed loading strategy. In particular, virtual BHS considering linear and nonlinear specimen models, and the diversity of actuator properties were carried out. A validation test was implemented with a steel frame specimen. A real application of this strategy to BHS on a full-scale 2-story frame specimen was performed. Studies showed that this strategy exhibited excellent tracking performance for the measured displacements of the control point and remarkable compensation for ineffective forces of the redundant actuator. This strategy was demonstrated to be capable of accurately and effectively reproducing the desired displacements in large-scale BHS.

신경회로망을 이용한 공압구동기의 위치 추종제어에 관한 연구 (A Study on Tracking Position Control of Pneumatic Actuators Using Neural Network)

  • Gi Heung Choi
    • 한국안전학회지
    • /
    • 제15권3호
    • /
    • pp.115-123
    • /
    • 2000
  • 공압구동기는 다양한 형태의 위험작업 환경하에서 사용되고 있다. 또한, 공압구동기를 적용한 공정은 일반적으로 환경친화적인 것으로 인식되고 있다. 대부분의 경우, 공압구동기는 point to point 제어에 사용된다. 그러나, 최근 공압구동기의 정밀 위치제어에 관한 많은 연구가 수행되고 있다. 본 연구에서는 비례밸브로 구성된 공압구동기의 추종위치제어에 관하여 논의한다. 제안되는 제어기는 압력제어 루프와 위치제어 루프로 구성된다. 공기의 압축성에 기인한 비선형성을 상쇄하기 위하여 되먹임선형화에 의한 PID제어기가 압력제어 루프에 사용된다. 위치제어에는 신경회로망을 사용하여 비선형성을 보상한 PID제어기가 사용된다. 실험결과에 의하면, 제안된 제어기는 공압구동기의 추종성능을 대폭 향상시킬 수 있는 것으로 나타났다.

  • PDF

Development of Modeling and control Methods for Multi-DOF dielectric polymer actuator

  • Jung, M.Y.;Jung, K.M.;Koo, J.C.;Choi, H.R.;Nam, J.D.;Lee, Y.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1225-1228
    • /
    • 2004
  • Principles and mechanism of energy transduction of dielectric polymer materials are well known from the various smart material related publications. However their introduction to industrial actuator applications is limited mainly due to difficulties guarantee controllability and reliability. Most of the previous publications have elaborates energy transduction physics of chunk of polymer while development of construction methods for feasible actuators made of the material is rarely proposed. In the present article, a conceptual design of multi-DOF linear polymer actuator construction that is to be controllable with moderate level of control work os introduced. In addition, numerical models that are developed with a unified energy based approach are presented not only for basic working mechanism analysis of the polymetric soft actuator but for providing analytical foundation to expend the concept toward design of multi-DOF actuator controls.

  • PDF

확장 작업업영역을 갖는 고속 3자유도 하이브리드 로봇 개발 (Development of a Novel 3-DOF Hybrid Robot with Enlarged Workspace)

  • 정성훈;김기성;곽경민;김한성
    • 한국산업융합학회 논문집
    • /
    • 제23권5호
    • /
    • pp.875-880
    • /
    • 2020
  • In this paper, a novel 3-DOF hybrid robot with enlarged workspace is presented for high speed applications. The 3-DOF hybrid robot is made up of one linear actuator and 2-DOF planar parallel robot in series. The actuation consists of one ball-screw to make one linear motion and two rotary ball-screws to transmit rotational motion to 2-DOF parallel robot. The workspace can be enlarged according to ball-screw stroke and the moving inertia can be reduced due to locating all the heavy actuators at the fixed base. The inverse kinematics and workspace analyses are presented. The robot prototype and PC-based control system are developed.

Kinematic Calibration of a Cartesian Parallel Manipulator

  • Kim, Han-Sung
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권3호
    • /
    • pp.453-460
    • /
    • 2005
  • In this paper, a prototype Cartesian Parallel Manipulator (CPM) is demonstrated, in which a moving platform is connected to a fixed frame by three PRRR limbs. Due to the orthogonal arrangement of the three prismatic joints, it behaves like a conventional X-Y-Z Cartesian robot. However, because all the linear actuators are mounted at the fixed frame, the manipulator may be suitable for applications requiring high speed and accuracy. Using a geometric method and the practical assumption that three revolute joint axes in each limb are parallel to one another, a simple forward kinematics for an actual model is derived, which is expressed in terms of a set of linear equations. Based on the error model, two calibration methods using full position and length measurements are developed. It is shown that for a full position measurement, the solution for the calibration can be obtained analytically. However, since a ball-bar is less expensive and sufficiently accurate for calibration, the kinematic calibration experiment on the prototype machine is performed by using a ball-bar. The effectiveness of the kinematic calibration method with a ball-bar is verified through the well­known circular test.

불확실성을 갖는 선형 확률적 시스템에 대한 고장허용제어기 설계 (Fault Tolerant Controller Design for Linear Stochastic Systems with Uncertainties)

  • 이종효;유준
    • 제어로봇시스템학회논문지
    • /
    • 제9권2호
    • /
    • pp.107-116
    • /
    • 2003
  • This paper presents a systematic design methodology for fault tolerant controller against a fault in actuators and sensors of linear stochastic systems with uncertainties. The scheme is based on fault detection and diagnosis(isolation and estimation) using a bank of robust two-stage Kalman filters, and accommodation of the actuator fault by eigenstructure assignment and immediate compensation of the sensor's faulty measurement. In order to clarify the fault feature in test statistics of residual, noise reduction method is given by multi-scale discrete wavelet transform. The effectiveness of our approach Is shown via simulations for a VTOL(vertical take-off and landing) aircraft subjected to parameter variations, external disturbances, process and sensor noises.

Fundamental restrictions for the closed-loop control of wind-loaded, slender bridges

  • Kirch, Arno;Peil, Udo
    • Wind and Structures
    • /
    • 제12권5호
    • /
    • pp.457-474
    • /
    • 2009
  • Techniques for stabilising slender bridges under wind loads are presented in this article. A mathematically consistent description of the acting aerodynamic forces is essential when investigating these ideas. Against this background, motion-induced aerodynamic forces are characterised using a linear time-invariant transfer element in terms of rational functions. With the help of these functions, the aeroelastic system can be described in the form of a linear, time-invariant state-space model. It is shown that the divergence wind speed constitutes an upper bound for the application of the selected mechanical actuators. Even active control with full state feedback cannot overcome this limitation. The results are derived and explained with methods of control theory.

Development of a PZT Fiber/Piezo-Polymer Composite Actuator with Interdigitated Electrodes

  • Kim, Cheol;Koo, Kun-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • 제16권5호
    • /
    • pp.666-675
    • /
    • 2002
  • Piezoelectric Fiber Composites with Interdigitated Electrodes (PFCIDE) were previously introduced as an alternative to monolithic wafers with conventional electrodes for applications of structural actuation. This paper is an investigation into the performance improvement of piezoelectric fiber composite actuators by changing the matrix material. This paper presents a modified micro-electromechanical model and numerical analyses of piezoelectric fiber/piezopolymer matrix composite actuator with interdigitated electrodes (PFPMIDE). Various concepts from different backgrounds including three-dimensional linear elastic and dielectric theories have been incorporated into the present linear piezoelectric model. The rule of mixture and the modified method to calculate effective properties of fiber composites were extended to apply to the PFPMIDE model. The new model was validated when compared with available experimental data and other analytical results. To see the structural responses of a composite plate integrated with the PFPMIDE, three-dimensional finite element formulations were derived. Numerical analyses show that the shape of the graphite/epoxy composite plate with the PFPMIDE may be controlled by judicious choice of voltages, piezoelectric fiber angles, and elastic tailoring of the composite plate.

Reconfiguration of Redundant Thrusters by Allocation Method

  • Jin, Jae-Hyun;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제6권2호
    • /
    • pp.76-83
    • /
    • 2005
  • Thrusters are important actuators where air is rare. Since the maintenance or replacement of thrusters is not easy in such an environment, a thrusting system must be highly reliable. Redundant thrusters are used to meet the reliability requirement. In this paper, a reconfiguration problem for those redundant thrusters is discussed, especially the management or distribution logic of redundant thrusters is focused on. The logic has to be changed if faults occur at thrusters. Reconfiguration is to change the distribution logic to accommodate thrusters' faults. The authors propose a reconfiguration algorithm based on the linear programming method. The authors define the reconfiguration problem as an optimization problem. The performance index is a quantity related with total fuel consumption by thrusters. This algorithm can accommodate multiple faults. Numerical examples are given to show the advantage of the proposed algorithm over existing methods.