• Title/Summary/Keyword: Line-type finite element

Search Result 91, Processing Time 0.023 seconds

Development of a Bellows Finite Element for the Analysis of Piping System (배관시스템 해석을 위한 벨로우즈 유한요소의 개발)

  • 고병갑;박경진;이완익
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1439-1450
    • /
    • 1995
  • Bellows is a familiar component in piping systems as it provides a relatively simple means of absorbing thermal expansion and providing system flexibility. In routine piping flexibility analysis by finite element methods, bellows is usually considered to be straight pipe runs modified by an appropriate flexibility factor; maximum stresses are evaluated using a corresponding stress concentration factor. The aim of this study is to develop a bellows finite element, which similarly includes more complex shell type deformation patterns. This element also does not require flexibility or stress factors, but evaluates more detailed deformation and stress patterns. The proposed bellows element is a 3-D, 2-noded line element, with three degrees of freedom per node and no bending. It is formulated by including additional 'internal' degrees of freedom to account for the deformation of the bellows corrugation; specifically a quarter toroidal section of the bellows, loaded by axial force, is considered and the shell type deformation of this is include by way of an approximating trigonometric series. The stiffness of each half bellows section may be found by minimising the potential energy of the section for a chosen deformation shape function. An experiment on the flexibility is performed to verify the reliability for bellows finite element.

Electromagnetic Behavior of High -$T_c$ Superconductors underthequenchstate -

  • 정동철;최효상;황종선;윤기웅;한병성
    • Progress in Superconductivity
    • /
    • v.3 no.2
    • /
    • pp.183-187
    • /
    • 2002
  • In this paper we analyzed the electromagnetic behavior of high $-T_{c}$ superconductor under the quench state using finite element method. Poisson equation was used in finite element analysis as a governing equation and was solved using algebra equation using Gallerkin method. We first investigate d the electromagnetic behavior of U-type superconductor. Finally we applied our analysis techniques to 5.5 kVA meander-line superconducting fault current limiters (SFCL) which are currently developed by many power-system researcher in the world. Meshes of 14,600 elements were used in analysis of this SFCL. Analysis results show that the distribution of current density was concentrated to inner curvature in meander-line type-superconductors and maximum current density 14.61 $A/\m^2$ and also maximum Joule heat was 6,420 W/㎥. We concluded that this meander line-type SFCL was not pertinet fur uniform electromagnetic field distribution.n.

  • PDF

A Coupled-Line Type Waveguide Bandpass Filter using Normalized Impedance Concept

  • Park, Jun-Seok;Kim, Young-Tae;Kim, Sun-Hyeong;Lim, Jae-Bong;Cho, Hong-Goo
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.2
    • /
    • pp.126-132
    • /
    • 2003
  • In this paper, a coupled-line type waveguide bandpass filter is newly proposed. The proposed bandpass filter configuration consists of magnetically coupled waveguide cavities. In order to show the background of the proposed waveguide bandpass filter, the general coupled line TEM bandpass filter theory, which means the coupled line filter with arbitrary coupled line length and impedance level, will be briefly introduced. Calculations for the even- and odd-mode wave impedance of a coupled line waveguide structure are achieved based on the normalized impedance concept for a broad-side coupled waveguides by using vector finite element method(VFEM) calculation. Measured result of an implemented coupled-line type waveguide filter is presented.

Optimisation of symmetric laminates with internal line supports for maximum buckling load

  • Walker, M.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.6
    • /
    • pp.633-641
    • /
    • 1998
  • Finite element solutions are presented for the optimal design of symmetrically laminated rectangular plates with various types of internal line supports. These plates are subject to a combination of simply supported, clamped and free boundary conditions. The design objective is the maximisation of the biaxial buckling load. This is achieved by determining the fibre orientations optimally with the effects of bending-twisting coupling taken into account. The finite element method coupled with an optimisation routine is employed in analysing and optimising the laminated plate designs. The effect of internal line support type and boundary conditions on the optimal ply angles and the buckling load are numerically studied. The laminate behavior with respect to fibre orientation changes significantly in the presence of internal line supports as compared to that of a laminate where there is no internal supporting. This change in behavior has significant implications for design optimisation as the optimal values of design variables with or without internal supporting differ substantially.

용탕유동과 응고를 고려한 주조공정의 유한요소해석

  • 윤석일;김용환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.620-625
    • /
    • 1995
  • Finite element analysis tool was developed to analyze the casting process. Generally, casting processes consists of mold filling and solifification. In order to investigate the effects of process variables and to predict the defects, both filling and solidiffication process were simulated simultaneously. At filling process, especiallywe consider thermal coupling to investigate thermal history of material during the filling stage. And thermal condition at the final stage of filling is used as the initial conditions in a solidification process for the exact simulation of the actual casting processes. At mold filling process, Lagrangian-type finite element method with automatic remashing scheme was used to find the material flow. To avoid numerical instability in low viscous fluid, a perturbation method with artificial viscosity is adopted. At solififfication process, enthalpy-based finite element method was used to solve the heat transfer problem with phase change. And elastic stress analysis has been performed to predict the thermal residual stress. Through the FE analysis, solidiffication time, position of solidus line, liquidus line and thermal residual stress are studied. Finite element tools developed in this study will be used process design of casting process and maybe basic structure for total CAE system of castigs which will be constructed afterward.

Finite element analysis of casting processes considering molten-metal flow and solidification (용탕유동과 응고를 고려한 주조공정의 유한요소해석)

  • Yoon, Suck-Il;Kim, Yong Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.3
    • /
    • pp.110-122
    • /
    • 1996
  • Finite element analysis tool was developed to analyze the casting process. Generally, casting process consists of mold filling and solidification. Both filling and solidication process were simulated simultaneously to investigate the effects of process variables and to predict the defect. At filling process, thermal coupling was especially considered to investigate thermal history of material during the filling stage. And thermal condition at the final stage of filling is used as the initial conditions in a solidification process for the exact simullation of the actual casting processes. At mold filling process, Lagragian-type finite element method with automatic remeshing scheme was used to find the material flow. A perturbation method with artificial viscosity is adopted to avoid numerical instability in low viscous fluid. At solidification process, enthalpy-based finite element method was used to solove the heat transfer problem with phase change. And elastic stress analysis has been performed to predict the thermal residual stress. Through the FE analysis, solidification time, position of solidus line, liquidus line and thermal residual stress are found. Through the study, the importance of combined analysis has been emphasized. Finite element tools developed in this study will be used process design of casting process and may be basic structure for total CAE system of castings which will be constructed afterward.

  • PDF

An Eulerian Finite Element Method for the Steady State Rolling/Extrusion of Sintered Powder Metals (소결분말재 정상상태 압연/압출공정의 오일러리안 유한요소해석)

  • ;;左野 利男
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.10a
    • /
    • pp.20-28
    • /
    • 1996
  • An Eulerian finite element method for the analysis of steady state rolling/extrusion of sintered powder metals is presented. Initial guess of the porosity distribution in an Eulerian mesh is obtained from the velocity and scaled pressure field computed by the Consistent Penalty finite element formulations-the standard one and the consistent penalty type one-are invoked for the analysis of strain hardening, dilatant viscoplastic deformation of porous metals. Comparisons of the predicted distributions of porosity to those by a Lagrangian finite element method and by experiments reported in the articles prove the effectiveness and validity of the proposed method.

  • PDF

Evaluation of J-integrals by Finite Element Model Based on EDI Method (EDI방법에 의한 유한요소모델의 J-적분값 산정)

  • 신성진;홍종현;우광성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.62-69
    • /
    • 1996
  • In this study, an equivalent domain integral (EDI) method is presented to estimate the track-till integral parameter, J-value, for two dimensional cracked elastic bodies which may quantify the severity of the crack-tit) stress fields. The conventional J-integral method based on line integral has been converted to equivalent area or domain integrals by using the divergence theorem. It is noted that the EDI method is very attractive because all the quantities necessary for computation of the domain integrals are readily available in a finite element analysis. The details and its implementation are extened to both h-version finite element model with 8-node isoparametric element and p-version finite element model with high order hierarchic element using Legendre type shape fuctions. The variations with respect to the different path of domain integrals from the crack-tip front and the choice of 5-function have been tested by several examples.

  • PDF

Finite Element Analysis of Gabled Hyperbolic Paraboloid Shells Subjected to Support Movements (지점변형을 하는 모임지붕형 쌍곡포물선쉘의 유한요소 해석)

  • Kim, Seung-Nam;Yu, Eun-Jong;Rha, Chang-Soon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.4
    • /
    • pp.57-69
    • /
    • 2012
  • This study investigated the behaviors of the gabled hyperbolic paraboloid shell structure subjected to differential settlement and the horizontal displacement due to the elongation of tie rod/beam on supports. Two types of shell structure with different roof slopes are used in study; conventional type which has perimeter beams around the shell panel, and simple type which removes the edge beams along the slab edge line. The effect of the removal of edge beam under vertical or horizontal displacement on supports, and the roof slope was compared using the finite element analysis.

Inelastic Buckling Behavior of I-Beam with Unequal End Moment (불균등 단부 모멘트를 받는 I형강의 비탄성 좌굴거동에 관한 연구)

  • Lee, Dong Sik;Oh, Soon Taek
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.257-265
    • /
    • 2004
  • The aim of this study is to investigate the inelastic buckling behavior of the beams under moment gradient using a line-type finite element method. The method is incorporated the non-uniform yielding of the cross-section caused by the presence of residual stress and accepted model of residual stress so called 'simplified' and 'polynomial' pattern is adopted in this study. The inelastic lateral-torsional buckling results obtained in this study is compared with the buckling results obtained from the design method based on the allowable stress method given in Korean Steel Designers Manual (KSDM 1995). This study have found that the design method in KSDM (1995) is conservative without and with intermediate bracing applied at the mid span of the beam, and there is some scope for improving the provisions of KSDM (1995)