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Inelastic Buckling Behavior of I-Beam with Unequal End Moment
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ABSTRACT : The aim of this study is to investigate the inelastic buckling behavior of the beams under moment gradient

—

_,_‘
:g
=
}-’d
o
oL
R
)
ih
K
12
k
ol
—Ll
FN
)
o
=2 -
o f
o

o
__m_

using a line-type finite element method. The method is incorporated the non-uniform vielding of the cross-section caused
by the presence of residual stress and accepted model of residual stress so called ‘simplified” and ‘polynomial” pattern is
adopted in this study. The inelastic lateral-torsional buckling results obtained in this study is compared with the buckling
results obtained from the design method based on the allowable stress method given in Korean Steel Designers’ Manual
(KSDM 1995). This study have found that the design method in KSDM (1995) is conservative without and with
intermediate bracing applied at the mid span of the beam, and there is some scope for improving the provisions of KSDM
(1995)
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1. Introduction pr
M = E]GJ +E1E1——
. L (2)

The elastic lateral-torsional buckling of simply
supported doubly symmetric I-beam under unequal

, The moment modification factor % is give as
end moment can be determined as

M —aM. - =1.75+1.058+0.38° (3)

where B (“ 2PE 1) is end moment ratio.

It can be noted that the maximum moment

M _is the closed form solution of the elastic critical modification (05,,,)

where @.is the moment medification factor and

factor used in Korean and

buckling load of doubly symmetric I-beam under American steel structure standard is 2.3 but the

uniform bending and is given as o
maximum %-in Australian and British steel structure
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standard is 2.56. The design method given in KSDM
(1995) has been developed from the closed form
solution of the elastic lateral-torsional buckling of
doubly

modification (am) can be used to determine the

symmetric [-beam, and the moment

allowable bending stress of I-beam under moment
gradient. Thus the aim of this study is to examine
the accuracy of the design method given in KSDM
(1995) with the inelastic lateral-torsional buckling
results obtained in this study. The inelastic
lateral-torsional buckling behavior of the I-beam
under uniform bending is plentiful. Trahair and
Kitipornchai ~ (1972)  studied  the
lateral-torsional buckling behavior of the beam under

inelastic

uniform bending. The mono symmetric effect caused
by the combination of residual stress and applied
load has been allowed in their study and the reduced

inelastic rigidities (El) (G/). (e1,) were estimated
by using tangent modulus theory. The non-uniformity
of the cross-section along the beam does not occur
when the I-beam is under uniform bending, but this
is not case for a beam under unequal end moment.
Therefore, the inelastic lateral-torsional buckling
analysis of simply supported beam unequal end
moment is more complicated then those of the beam
under uniform bending due to the non-uniformity of
the cross—section of the beam. Nethercot and Trahair
(1976) proposed the design approximation of beam
under unequal end moment using the finite element
method of analysis developed by Nethercot (1973).
Dux and Kitipornchai (1983) conducted the
experimental and theoretical study of the simply
supported beam under moment gradient with similar
cross—section considered by Nethercot and Trahair
(1976), and they found that couple of the
experimental results were not agreed with the
theoretical results obtained by Nethercot and Trahair
(1976).

This study investigates the inelastic lateral-
torsional buckling behavior of the simply supported
I-beam under unequal end moment with I-sections
manufactured in Korea using a finite element

method. The line-type finite element employed in this
study allows for non-uniformity of the cross-section
along the beam caused by non-uniform yielding of the
cross-section induced by the combination of residual
stresses and moment gradient. The pattern of
residual stress used in this study are the polynomial
model that is generally accepted by Australian and
British hot-rolled I-sections, and the simplified model
that is generally accepted by American hot-rolled
I-section. This study considers the inelastic
lateral-torsional buckling of the beam under unequal
different
manufactured in Korea and these results are
compared it with design method in KSDM (1995).

This study has found that there are disparity

ends moment with four I-sections

between the inelastic lateral-torsional buckling
results and KSDM (1995) that is based on the
allowable stress method.

2. Theory

2.1 General

A line-type element developed by Lee (2001) is
used in this study to analyze the inelastic
lateral-torsional buckling behavior of the beams
under moment gradient. Complete details of a
line-type finite element method presented by Lee
(2001), and Lee and Oh (2004) and a brief
description of the method is given in this paper.

z(w)

1(a) Beam element
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Figure 1. Beam element and loading

Figure 1(a) shows a line-type element used in
this study with reference axis located at mid height
of the web. Figure 1(b) shows the simply supported
beam is subjected to an unequal end moment. The
strategy adopted in this study is that the in-plane
analysis of the beam is firstly undertaken to
determine the distribution of the moment along the
beam by initially assuming applied moment and then
corresponding applied curvatures are estimated by
deploying moment-curvature relationship (Lee 2001,
Lee and Oh 2004), and the out-of-plane buckling
analysis can then be performed with predetermined
curvature and new neutral axis along the beam. The
applied moment is adjusted until buckling occurs. It
should be noted that the stiffness and the stability
matrices in the out-of-plane buckling analysis is
depended on the combination of the applied load and
the residual stress. This study considers simply
supported beam under moment gradient and thus the
applied bending moment and shear force along the

beam can be determined from simple statics. The

tangent modulus (£) theory that is used in the
buckling analysis is equal to the elastic modulus for
the elastic regions and the strain hardening modulus
for vielded and strain hardened regions of the
cross—section as shows in Fig. 2.

The patterns of residual stress that may exist in
hot-rolled I-section used in this study are the
simplified and the polynomial model as was used by
number of researchers as shown in Fig. 3. The
simplified pattern of residual stress is shown in Fig.
3(a) and Fig. 3(b) and (c¢) is for polynomial pattern

ETE HF RHES Bhe HZie| vlERY ZIZ7{ S0l TE 93
of residual stress for the slender I-section and
compact [-section respectively. The distribution of
residual stress in the flange and the web with the
maximum residual stress at the flange tip and the
flange/web junction is given in Lee (2001) and Lee
and Oh (2004).

Stress“i

H

Es‘[ E

E

£, £, =58, Strain

Figure 2. Constitutive relationship
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3(a) Simplified residual stresses

(¢c) Compact t-section

(b) Slender I-section
3(b) Polynomial residual stresses

Figure 3. Model of residual stresses
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2.2 In-plane bending analysis

The distribution of the moment along the simply
supported beam under moment gradient can be
determine from simple statics

M, =M{-(+B)z/L} (4)

B is end moment ratio range from -1 to 1. The
negative value of B indicates single-curvature whereas

the positive value of B indicates double- curvature.
The applied curvature, and the elastic and inelastic
regions of the cross—section along the beam can be
determined with predetermined nonlinear moment-
curvature relationship (Lee 2001, Lee and Oh 2004)
for the cross—section at a given value of applied
moment.

2.3 Out-of-plane buckling analysis

Figure 4 shows the buckling deformation of the
cross-section. As the cross—section displaces, the
lateral displacements of the top and the bottom

flange is expressed as Ur and Ys respectively, while
®: and 9 represented the twist of the top and the

bottom flange respectively. The buckling deformations

{a}= <”r~“s’¢r’¢e> of the flanges for an element are
assumed as cubic variations of z direction, while the
deformation of the web are assumed as a cubic curve.
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Figure 4. Buckling deformations in the plane of the
cross-section

The beam theory (Timoshenko and Gere 1961) is
used to derive the stiffness matrices of the flanges

conjunction with tangent modulus (E) The minor
axis flexural and torsional rigidities are determined
as was done by Trahair and Kitipornchai (1972). The
plate theory is employed to determine the stiffness
matrix of the web. Isotropic plate theory
(Thimoskenko and Woinowsky-Kriegr 1959) and
orthotrapic plate theory (Haaijer 1957, Dawe and
Kulak 1984 and Bradford 1986) based on the flow
theory of the inelasticity is used for elastic and
inelastic regions of the web respectively. The
simplified and the polynomial residual stresses are
conceptually different. The distribution of the
polynomial residual stress in the flange and the web
is determined by satisfying the axial static and
torque equilibrium condition of the residual stress.
The simplified residual stress satisfies the static
equilibrium condition but not with the axial torque
equilibrium condition. Therefore, the torsional
rigidity of  the

((GJ), - j o (x' +y3)dA]

produced by residual stress.

cross-section is altered

to eliminate the axial torque

The stiffness matrix K] of the beam element is
sum of the flange [k Jand the web stiffness matrix
[ku], which is derived from the beam and the plate
theory respectively, while the stability matrix l¢] of
the beam element is sum of the flange l¢] and the

web stability matrix [g] It must be noted that the
stiffness and the stability matrices of the flange and
the web are not constant due to the monosymmtric
effects caused by the applied load and the residual
stress.

2.4 Buckling analysis

The stiffness and the stability matrix of the beam
element can be assembled into the global stiffness
and stability matrix. The inelastic buckling load can

260 si=zrxsts| =2 M6 25(SH 695) 2004 4%



be determine as
(x]-lchat=0 (5)

where [k ] and [G] are the global stiffness and

stability matrix respectively and {a} is eigenvector.
The determination of inelastic buckling load is more
complicated than the elastic buckling due to
non-uniformity of the cross-section. The critical
buckling  solution can be obtained when
determininant of equation 5 is vanishes. The iterative
method has been employed because ill-behave nature
of eigenvalue, the most approprate method iteration

1s bisection method.

3. Accuracy of method

The finite element method used in this paper to
predict the buckling
moment of the beams under moment gradient is

inelastic lateral-torsional

compared with the experimental study. Dux and
(1983)

study of the beams under unequal end moment. The

Kitipornchai conducted the experimental

measured mean material properties were Klelastic
modulus) =209.9GPa, @ (yvield stress) =285MPa
(flange) and @ (vield stress)=321MPa (web). The

cross—sectional dimensions were h(distance between
flange centroid) =245.1 mm, flange width (b/)=146.4

mm, thickness of web (¢,)= 6.4 mm and thickness of
flange (£,)= 10.9 mm. The pattern of residual stress

used in this comparison study is the polynomial
pattern with a parabolic distribution of residual
stress in the flange and a quartic distribution in the
web. The number of element used in this comparison
is 16 because the yielding of cross-section is confined
towards the beam ends and the bending moment in
the mid span region is small, and 6 elements with
equal length of beam near the supports and the
remaining 4 elements of equal length the mid span
region is used in this study. Fig. 5 shows the
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comparison between this study and the experimental
results of Dux and Kitipornchai (1983). The end
moment, ratio (B )used in experimental study was -1,
0.7 and 0 which produces a single-curvature bending.
[t can be seen in the figure that the inelastic
lateral-torsional buckling results obtained in this
study is agreed very well with experimental results

for end moment ratio (B) of -1, 0.7 and 0.
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Figure 5. Comparison with experimental study

4. Inelastic lateral-torsional buckling of

beam

The inelastic lateral-torsional buckling of beam
under a moment gradient is investigated in this
section with four I-section members manufactured in
Korea. The polynomial and the simplified pattern of
residual stress are used in this study. The considered
cross—sections are 200x150, 300x175, 400x400 and
800x300. The material properties are FK(Elastic

modulus) =2.1x10° kg/em® (205.926 x10°MPa). ©.
(vield stress)=2400 kg/cm® (235 MPa), v(Poisson’s

ratio)= 0.3, &, = 10€,. and £/E. = 40. Figures
from 6 to 9 show the inelastic lateral-torsional
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buckling results for B=0that is subjected a single
curvature bending, while 10 to 13 are for [-beams with

B =1 that is subjected to a double (reverse)-curvature
bending. The inelastic lateral-torsional buckling

moment M, is non-dimensionlized with respect to the
plastic moment M, while dimensionless slenderness

VMM, g used, where M:is the elastic lateral
buckling load.

Elastic

Sim plified pattern

0.8 polynomial pattern

KSDM Egn_(1)1,=L2

0.6 KSDM Eqn. (2)

M,/M,

0.4
KSDM Egn. (1) 1,=L

0.2

KSDM Egn. (2) I,=L

2

0 0.5 1 1.5

( MP’/MI.)” s

Figure 6. Inelastic buckling of simply supported beam
200x150 with 3=0.

Elastic

08 Sim plified pattern Polynomial pattern

KSDM Eqn. (2) ,=L/2 KSDM Eqn. (1)

0.6 1=L12

M/Me

04
KSDM Eqn. (2) L=L

KSDM Eqgn. (1)1, =L
0 0.5 1 1.5 2
(Mr/ME)“ !

Figure 7. Inelastic buckling of simply supported beam
300%175 with 3 =0.

Also shown in these figures are the allowable
bending strength curves in the KSDM (1995) and

uses.

3
o, =|1-04\ L% (O ©)
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Lh 15 (7
A?
where (b = distance between the compressive
flanges

C= 1.75—1.05[%]+0.3[%J <23, M>M,

2 2
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KSDM Eqn. (1) and KSDM Eqn. (2) in the figures
are referring to the equation 6 and 7 respectively.

1.2 Elastic

Simplified pattern
0.8

Polynomial pattern

KSDM Eqn. (1)1,=L/2
KSDM Eqn. (2)

0.6 1L

M/M,

04
KSDM Eqn. (1) |=L

0.2
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0 0.5 1 L5 2
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Figure 8. Inelastic buckling of simply supported beam
400400 with 3=0.
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Two different effective lengths are used to
determine the allowable bending stress in this
study. This study considers the effective length is
the span length of the beam and the effective length
is then halved by introducing intermediate bracing
at mid-span of beam.

Elastic

Sl

Simplified pattern

Polynomial pattern
0.8

KSDM Eqgn. (2)

=Ls2 KSDM Egn. (1)

0.6

M,'M,

0.4
KSDM Eqn. (l)lh' L

KSDM Egn. (2) |,=L

0 0.5 1 1.5

1)

(MM )¢

Figure 9. Inelastic buckling of simply supported beam
800x300 with 3=0.

Elastic

Simplified pattern )
P P Polynomial pattern

0.8
KSDM Eqn, (2)1,=L/2

0.6 KSDM Egn. (1)

M;/Mp

0.4
KSDM Eqn. (1)1 =L
0.2
KSDM Egqn. (2)1,=L

2

0 0.5 1 1.5

(MP/MI)US

Figure 10. Inelastic buckling of simply supported beam
200x150 with 3=1
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It would be expected that KSDM (1995) is
conservative for unrestrained beams, but not with
retrained beams. It can be seen in the figures that
the design method in KSDM (1995) is excessively
conservative with and without intermediate bracing
at the mid span of the beam.

Elastic

Simplified pattern Polynomial pattern

0.8
KSDM Egn. (2) lh:L
KSDM Eqn. (1)

0.6 1,=L72

MM

0.4

KSDM Eqn. (2) =L

KSDM Egn. (1)1,=L

0 0.5 1 1.5

t2

(M,)/Mh)(t.i

Figure 11. Inelastic buckling of simply supported beam
300x175 with 3=1.

The buckling results of the beam with B=0an4 1
are shown that the compact I-section (200x150 and
400x400) is more conservative than the slender
[-sections (300%175 and 800x300). The allowable
bending stress in KSDM (1995) can be determined
from Egn. either 6 or 7 and selected whichever
provides the highest value. The buckling results of
the compact I-sections are shown that the allowable
bending stress determined from Egn. 7 is higher than
Ean. 6, but the slender [-section are depended on the
length of the beam. The design method KSDM (1995)
is more conservative as the dimensionless length

VM, /M, is decreased, which is due to the maximum
allowable bending stress used in KSDM that is
o /15
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Elastic

Simplified pattern
Polynomial pattern

0.8 K SDM Eqn. (2)

L=L72

KSDM Egqn. (1)

0.6
1=L2

M/M,

0.4 KSDM Eqn. (1)
=L
0.2
KSDM Egn. (2) 1,=L
0
0 0.5 1 1.5 2

(MP/ME)(LS

Figure 12. Inelastic buckling of simply supported beam
400x400 with 3 =1,

Elastic

Polynomial pattern
0.8 Simplified pattern

KSDM Eqn. (2)1,=L

E 0.6 KSDM Eqn. (1)
=
0.4
KSDM Eqn. (1)1 =L
0.2
KSDM Eqn. (2) [,=L2
0
0 0.5 1 1.5 2

(MP/ME)” 5

Figure 13. Inelastic buckling of simply supported beam
800x300 with 3=1.

Different pattern of residual stresses have little
influence on the inelastic lateral-torsional buckling
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behavior of the beams for compact I-sections but the
buckling loads of the slender I-sections are strongly
influenced by assumed pattern of the residual stress,
especially in the regions of mid-slenderness. The
inelastic lateral-torsional buckling results obtained
from the polynomial residual stress is tended to be
lower than the simplified pattern. This is due to the
maximum residual stress at the flange tip and the
flange/web junction. The maximum residual stress in
the polynomial pattern of residual stress is high than
those of the simplified pattern of residual stress.

5. Conclusions

This paper investigates the inelastic buckling
behavior of the simply supported beams under
unequal end moment using a line-type finite element
method. The finite element method is incorporated
the well-known simplified pattern and the polynomial
pattern of residual stresses. This study has
considered four different I-sections manufactured in
Korea to analyze the [-beams under unequal end
moment. The accuracy of KSDM (1995) is examined
by comparing the inelastic lateral-torsional buckling
results obtained in this study. This study has found
that the KSDM (1995)is generally conservative with
and without intermediate bracing at the mid span of
the beam and there is some scope for improvement.
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