• Title/Summary/Keyword: Line-CCD

검색결과 254건 처리시간 0.027초

기계시각에 의한 풋고추 온라인 등급판정 알고리즘 개발 (Development of On-line Grading Algorithm of Green Pepper Using Machine Vision)

  • 조남홍;이수희;황헌;이영희;최승묵;박종률;조광한
    • Journal of Biosystems Engineering
    • /
    • 제26권6호
    • /
    • pp.571-578
    • /
    • 2001
  • Production of green pepper has increased for ten years in Korea, as customer's preference of a pepper tuned to fiesta one. This study was conducted to develop an on-line fading algorithm of green pepper using machine vision and aimed to develop the automatic on-line grading and sorting system. The machine vision system was composed of a professive scan R7B CCD camera, a frame grabber and sets of 3-wave fluorescent lamps. The length and curvature, which were main quality factors of a green pepper were measured while removing the stem region. The first derivative of the thickness profile was used to remove the stem area of the segmented image of the pepper. A new boundary was generated after the stem was removed and a baseline of a pepper which was used for the curvature determination was also generated. The developed algorithm showed that the accuracy of the size measurement was 86.6% and the accuracy of the bent was 91.9%. Processing time spent far grading was around 0.17 sec per pepper.

  • PDF

PDP 패턴검사를 위한 실시간 영상처리시스템 개발 (Real-Time Image Processing System for PDP Pattern Inspection with Line Scan Camera)

  • 조석빈;백경훈;이운근;남기곤;백광렬
    • 전자공학회논문지SC
    • /
    • 제42권3호
    • /
    • pp.17-24
    • /
    • 2005
  • 본 논문에서는 PDP 상판의 패턴결함을 검출하는 영상처리 알고리즘을 제안하고, 이를 실시간으로 처리하기 위한 영상처리 하드웨어의 구현을 나타낸다. 제안된 영상처리 알고리즘은 참조영상의 패턴간격을 이용하여 결함영상을 추출하는 알고리즘이며, 영상처리 시스템은 실시간 구조로 설계된 고속 영상처리 하드웨어와 여러 개의 영상처리 하드웨어 제어를 위한 데이터관리 및 시스템제어 하드웨어에로 나누어 구현하였다. 또한, 본 논문에서는 구현한 영상처리 시스템을 이용하여 실제 PDP 상판의 결함을 검사하는 실험 환경을 구성하여 패턴의 결함을 검사하는 실험을 수행하였다. 그 결과 제안한 알고리즘과 구현한 하드웨어의 우수성을 입증 하였다.

로보트 아크용접에서 시각인식장치를 이용한 용접선의 추적

  • 손영탁;김재선;조형석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.550-555
    • /
    • 1993
  • The aim of this paper is to present the development of visual seam tracking system equipped with visual range finder. The visual range finder, which consists of a CCD camera and a diode laser system with line generating optics, developed to recognize the types of weld joints and detect the location of weld joints. In practical applications, however, images of the weld joints are often degraded due to spatters, are flares, surface specularity, and welding smoke. To overcome the problem, this paper proposes a syntactic approach which is a class of artificial intelligence techniques. In the approach, the type of weld joint is inferred based upon the production rules which are linguiques grammars consisting of a set of line and junction primitives of laser strip image projected on weld joint. The production rules eliminate several noisy primitives to create new primitives through the merging process of primitives. After the recognition of weld joint, arc welding is started and the location of weld joints is repeatedly detected using a spring model-based template matching in which the template model is a by-product of the recognition process of weld joint. To show the effectiveness of the proposed approach a series of experiments-identification and robotic tracking-are conducted for four different types of weld joints.

  • PDF

문어흘림낚시용 친환경 봇돌의 색 효과 (Color effect of the environment-friendly sinker for octopus drift-line)

  • 안영일
    • 수산해양기술연구
    • /
    • 제45권3호
    • /
    • pp.144-150
    • /
    • 2009
  • The choice behavior of the octopus in response to the environment-friendly colored sinker for octopus driftline and the sinker's fishing effect were studied under experimental conditions in the water tank and the field. The colors of the sinkers used for the experiment are white, black, yellow and green. Artificial baits are attached to the sinkers in order to attract the octopuses in the experiment. In the water tank experiment, two sinkers of two different colors are placed in a compartmentalized corner of the rectangular tank, and a CCD camera records the choice behaviors of the octopuses to the colored sinkers. In the field experiment, the catch investigation of octopus for each colored sinker was conducted 14 times in total by using 2(A, B) commercial fishing boats at the coast of Gangneung within 30m of depth in 2006. The number of colored sinkers per operation was a total of 24-40 pieces with the same number of sinkers individually for four colors. As a result, it was found that the octopus selected white the most followed by black and yellow in their choice of colored sinkers in the water tank experiment, and green was the lowest in their choice. Even in the field experiment, the sinkers of white and black showed a higher catch of octopus than the sinkers of yellow and green.

해상도 3차원 상호상관 Volume PIV 시스템 개발 및 적용 (Development and Application of High-resolution 3-D Volume PIV System by Cross-Correlation)

  • 김미영;최장운;이현;이영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.507-510
    • /
    • 2002
  • An algorithm of 3-D particle image velocimetry(3D-PIV) was developed for the measurement of 3-D velocity Held of complex flows. The measurement system consists of two or three CCD camera and one RGB image grabber. Flows size is $1500{\times}100{\times}180(mm)$, particle is Nylon12(1mm) and illuminator is Hollogen type lamp(100w). The stereo photogrammetry is adopted for the three dimensional geometrical mesurement of tracer particle. For the stereo-pair matching, the camera parameters should be decide in advance by a camera calibration. Camera parameter calculation equation is collinearity equation. In order to calculate the particle 3-D position based on the stereo photograrnrnetry, the eleven parameters of each camera should be obtained by the calibration of the camera. Epipolar line is used for stereo pair matching. The 3-D position of particle is calculated from the three camera parameters, centers of projection of the three cameras, and photographic coordinates of a particle, which is based on the collinear condition. To find velocity vector used 3-D position data of the first frame and the second frame. To extract error vector applied continuity equation. This study developed of various 3D-PIV animation technique.

  • PDF

인간의 행동 인식을 위한 얼굴 방향과 손 동작 해석 (Analysis of Face Direction and Hand Gestures for Recognition of Human Motion)

  • 김성은;조강현;전희성;최원호;박경섭
    • 제어로봇시스템학회논문지
    • /
    • 제7권4호
    • /
    • pp.309-318
    • /
    • 2001
  • In this paper, we describe methods that analyze a human gesture. A human interface(HI) system for analyzing gesture extracts the head and hand regions after taking image sequence of and operators continuous behavior using CCD cameras. As gestures are accomplished with operators head and hands motion, we extract the head and hand regions to analyze gestures and calculate geometrical information of extracted skin regions. The analysis of head motion is possible by obtaining the face direction. We assume that head is ellipsoid with 3D coordinates to locate the face features likes eyes, nose and mouth on its surface. If was know the center of feature points, the angle of the center in the ellipsoid is the direction of the face. The hand region obtained from preprocessing is able to include hands as well as arms. For extracting only the hand region from preprocessing, we should find the wrist line to divide the hand and arm regions. After distinguishing the hand region by the wrist line, we model the hand region as an ellipse for the analysis of hand data. Also, the finger part is represented as a long and narrow shape. We extract hand information such as size, position, and shape.

  • PDF

시추코어 분석 및 데이터베이스화를 위한 칼라 코어스캐너의 응용 (Applicability of Color Corescanner to the Analysis and Data-base of Drill Cores)

  • 김중열;;김유성;현혜자
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.249-256
    • /
    • 2001
  • Optical Color Corescanner firstly developed by DMT-GeoTec, Germany and further upgraded through the Korea-Germany joint project is capable of duplicating the core surfaces. The tool uses a digital CCD line camera. As the core is rotated by an electric motor, the camera scans the uppermost line, everytime with a circumferential increment of up to 0.05mm(20pixels/mm) and hence a complete 360$^{\circ}$ unwrapped image(core image) is produced. This paper illustrated diverse research benefits of such core images from several test sites in our country. All scanned images could be stored as a data-base one and easily used with software facilities \circled1 to evaluate a percental distribution of mineral components or grain size etc. not only for the rock classification but also for e.g. the assessment of building stones, \circled2 to study potential reservoirs as a hydrocarbon indicator using ultraviolet fluorescence reflection from cores, \circled3 to facilitate the qualitative and quantitative analysis of fractures, \circled4 to evaluate the fractures and thin bedded reservoirs using spectral color responses. Based on abundant scanning experiments, it would seem that this imaging work should lead to reflecting the future trend in underground survey toward a more comprehensive understanding of the properties and behaviors of in situ rocks.

  • PDF

3차원 Volume PIV의 개발 (Development of 3-D Volume PIV)

  • 최장운;남구만;이영호;김미영
    • 대한기계학회논문집B
    • /
    • 제27권6호
    • /
    • pp.726-735
    • /
    • 2003
  • A Process of 3-D Particle image velocimetry, called here, as '3-D volume PIV' was developed for the full-field measurement of 3-D complex flows. The present method includes the coordinate transformation from image to camera, calibration of camera by a calibrator based on the collinear equation, stereo matching of particles by the approximation of the epipolar lines, accurate calculation of 3-D particle positions, identification of velocity vectors by 3-D cross-correlation equation, removal of error vectors by a statistical method followed by a continuity equation criterior, and finally 3-D animation as the post processing. In principle, as two frame images only are necessary for the single instantaneous analysis 3-D flow field, more effective vectors are obtainable contrary to the previous multi-frame vector algorithm. An Experimental system was also used for the application of the proposed method. Three analog CCD camera and a Halogen lamp illumination were adopted to capture the wake flow behind a bluff obstacle. Among 200 effective particle s in two consecutive frames, 170 vectors were obtained averagely in the present study.

피부색 정보와 얼굴의 구조적 특징 분석을 통한 얼굴 영상 인식 시스템 (Human Face Recognition System Based on Skin Color Informations and Geometrical Feature Analysis of Face)

  • 이응주
    • 융합신호처리학회논문지
    • /
    • 제1권1호
    • /
    • pp.42-48
    • /
    • 2000
  • 본 논문에서는 칼라 CCD 카메라로부터 입력된 얼굴 영상에서 피부색 정보와 눈, 코, 입 등의 얼굴 영역 특징 자 및 턱 선의 선형 적 특징을 이용한 얼굴 영상 인식 알고리즘을 제안하져다. 제안한 알고리즘에서는 인간의 시각 체계와 비교적 유사한 HSI 좌표계 상에서 피부색에 대한 색상 정보와 명암값 정보를 함께 이용함으로써 얼굴영역 추출의 효율을 높였고, 인종에 따라 적응적인 추출이 가능하도록 하였다. 또한 추출된 얼굴 영역에서 얼굴 인식율 개선을 위해 눈, 코, 입 등의 구조적 위치정보와 턱선의 선형적인 특징값을 이용하여 얼굴 인식율을 개선하였다. 제안한 알고리즘에서는 기존의 명암 정보를 이용하는 방법과는 달리 색상 정보와 명암 정보를 함께 이용함으로써 정확한 얼굴영역의 검출이 가긍하였으며 인식 방법에 있어서 구조적 특징자 외에 턱선의 선형적인 관계값을 이용함으로써 인식 효율을 개선하였다.

  • PDF

Neural fuzzy control for a mobile vehicle

  • Sugisaka, Masanori;Wang, Xin;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.338-341
    • /
    • 1996
  • A neural fuzzy control strategy, developed in order to make a Mobile Vehicle(MV) run along with the traffic guidelines on the road, is presented. A neurocomputer is used in the control procedure and it learnt the driving knowledge to control the MV's actions. The image information of the guidelines is provided by a CCD camera on the top of the MV. The MV utilize the image information to identify the shape of the road and to decide the position of itself, and control the running actions. A fuzzy controller works on-line. Both of the neural controller and the fuzzy controller make up each other. This control method solve the problem of mechanical and electrical inertia and make the Mobile Vehicle run rapidly and smoothly.

  • PDF