• Title/Summary/Keyword: Limit state analysis

Search Result 646, Processing Time 0.031 seconds

Reliability-Based Assessment of Structural Safety of Regid-Frame-Typed Segmental PSC Box Girder Bridges Erected by the FCM during Construction (FCM에 의한 라멘식 세그멘탈 PSC박스거더 교량의 신뢰성에 기초한 시공간 구조안전도평가)

  • Cho, Hyo-Nam;Joo., Hwan-Joong;Park, Kyung-Hoon;Moon, Kyung-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.131-140
    • /
    • 2002
  • In this paper, a limit state model based on the analysis of structural behavior of segmental prestressed concrete box girder bridges and reliability-based safety assessment method are proposed for the bridges erected by free cantilever method. Strength limit state models for prestressed concrete box girder and rigid-frame type columns are developed for a structural safety assessment during construction. Based on the proposed limit state models, the reliability of the bridge is evaluated by using the Advanced First Order Second Moment method. The proposed model and method are applied to the Seo-Hae Grand Bridge built by FCM in order to verify its effectiveness in the safety assessment during construction of the kind of bridges. The sensitivity analyses of the main parameters are also performed in order to identify the important factors that need to be controlled for the safety of the bridges during construction.

Seismic evaluation of cemented material dams -A case study of Tobetsu Dam in Japan

  • Arefian, Amir;Noorzad, Ali;Ghaemian, Mohsen;Hosseini, Abbas
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.717-733
    • /
    • 2016
  • Trapezoidal Cemented Sand and Gravel Dam, namely Trapezoid CSG, is a new type of dam. Due to lack of dynamic studies in the field of CSG dam, this research was performed to analyze Trapezoidal CSG dam using dynamic Finite element method with ABAQUS Software. To investigate possible earthquake-induced damages, fragility curves are plotted based on damage index, the length of the cracks created at the dam base and the area of cracked elements in the dam. The seismic analysis indicated that minimum and maximum tensions are generated in the heel and toe of the dam, respectively. According to the fragility curves, with increase in PGA, the possibility of the exceeding the defined limit state is increased. However, the rate of increment is significantly reduced after PGA=0.4 g. Also, the same result is achieved for the second limit state. The "area of cracked elements" is more conservative criterion than the "crack length at the dam base", especially at PGA<0.4 g. As conclusion, CSG dams, despite of being made of poor materials in comparison with concrete dams, show good resistance, and even in some situations, better performance than the weighted concrete dams.

Flexural Reliability Assessment of PSC-I Girder Rail Bridge Under Operation (사용중 PSC-I 거더 철도 교량의 휨모멘트에 대한 신뢰도 분석)

  • Kim, Ki Hyun;Yeo, Inho;Sim, Hyoung-Bo
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.187-194
    • /
    • 2016
  • It is necessary to determine reliability indexes of existing railway bridges prior to setting up a proper target reliability index that can be used to introduce a reliability based limit state design method to design practice. Reliability is evaluated for a six PSC-I girder railway bridge, which is one of many representative types of double-track railway bridges. The reliability assessment is carried out for an edge girder subjected to bending moment. In the assessment, the flexural resistance and the fixed-load effect were obtained using existing statistical values from previous research on the introduction of limit state design to road bridge design. On the other hand, the live-load effect was determined using statistical values obtained from field measurement for the Joong-ang corridor, on which heavy freight trains are frequently passing. The reliability assessment is performed by AFOSM(Advanced First Order Second Moment method) for the limit state equation, and a sensitivity analysis for the reliability is performed for each factor of the load and resistance effects.

Limit State Assessment of SCH80 3-inch Steel Pipe Elbows Using Moment-Deformation Angle Relationship (모멘트-변형각의 관계를 이용한 SCH80 3인치 강재배관엘보의 한계상태 평가)

  • Kim, Sung-Wan;Yun, Da-Woon;Cheung, Jin-Hwan;Kim, Seong-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.122-129
    • /
    • 2020
  • To conduct probabilistic seismic fragility analysis for nuclear power plants, it is very important to define the failure modes and criteria that can represent actual serious accidents. The seismic design criteria for piping systems, however, cannot fully reflect serious accidents because they are based on plastic collapse and cannot express leakage, which is the actual limit state. Therefore, it is necessary to clearly define the limit state for reliable probabilistic seismic fragility analysis. Therefore, in this study, the limit state of the SCH80 3-inch steel pipe elbow, the vulnerable part of piping systems, was defined as leakage, and the in-plane cyclic loading test was conducted. Moreover, an attempt was made to quantify the failure criteria for the steel pipe elbow using the damage index, which was based on the dissipated energy that used the moment-deformation angle relationship.

Reliagility Analysis of Tension Leg Platforms for Severe Storm Waves (대규모 폭풍에 대한 Tension Leg Platform의 신뢰도해석)

  • 박우선;윤정방
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.16-24
    • /
    • 1991
  • This paper presents a method of the reliability analysis for a tension leg platform(TLP)in severe storm waves by using the first passage concept of the random tensile stress in the tendons. In the present method, two failure conditions are considered ;i.e., the exceedance of the ultimate tensile capacity and the occurrence of the negative tension. In order to consider the correlation effects between the failure events for each corner resulted from the rupture of all tencons at one corner, a new system limit state for a rectangular shaped TLP is developed, which is defined in terms of the TLP motions in the vertical plane ;i.e., heave, roll, and pitch. To illustrate the validity of the present method, the numerical analysis is carried out for two TLP's with different structural dimensions. Then, the results are compared with those by other methods.

  • PDF

Analysis on the Geo-reinforced Slope Using Upper Bound Theory (상계해석을 이용한 보강토 사면의 해석)

  • Choi Sang-Ho;Kim Jong-Min;Yu Nam-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.207-215
    • /
    • 2004
  • In this study, the upper bound theory is applied to a reinforced slope to develop an limit state analysis method. As processing of this upper bound theory in formulating finite element, the basic idea of numerical method can be obtained from a macroscopic point of view with an anisotropic homogeneous material. The reinforced soil strength reliability depends on properties of reinforcements which consist of the interaction of interfaces between back fill and reinforcements. Both soil's mechanical property and overall behaviour of reinforced soil can be controlled via arranging geometry and relative proportions of reinforced soil. Therefore, the upper bound theory can not only predict the particular limit state action of reinforced soil slope but also is efficiently able to estimate the local plastic failure.

Analysis of Cold Workability at the A16061 Bulk Material by Tension and Compression Tests (Al 6061 Bulk재에서 인장 및 압축 시험에 의한 상온 가공성 비교 분석)

  • 김국주;박종수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.74-79
    • /
    • 2003
  • When workability at the a certain bulk deformation process is defined as the maximum plastic deformation capability that the workpiece can sustain without causing any cracks or fracture, the workability is dependent on the microstructure, initial workpiece shape, stress state developed during the deformation process, strain rata and presence of the interfacial friction between workpiece and tool. For a review purpose, the workability definition and test methods are summarized depending on the applied stress state at bulk deformation process in Table 1 at the text. In this study, the cold workabilities of as-cast A16061 bulk material have been measured and comparatively analyzed at the primary tensile stress state by using tensile specimens, the primary compressive stress state by using cylindrical specimens, and the forming limit diagram by ductile fracture.

  • PDF

RELIABILITY-BASED DESIGN OPTIMIZATION OF AUTOMOTIVE SUSPENSION SYSTEMS

  • Chun, H.H.;Kwon, S.J.;Tak, T.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.713-722
    • /
    • 2007
  • Design variables for suspension systems cannot always be realized in the actual suspension systems due to tolerances in manufacturing and assembly processes. In order to deal with these tolerances, design variables associated with kinematic configuration and compliance characteristics of suspensions are treated as random variables. The reliability of a design target with respect to a design variable is defined as the probability that the design target is in the acceptable design range for all possible values of the design variable. To compute reliability, the limit state, which is the boundary between the acceptable and unacceptable design, is expressed mathematically by a limit state function with value greater than 0 for acceptable design, and less than 0 for unacceptable design. Through reliability analysis, the acceptable range of design variables that satisfy a reliability target is specified. Furthermore, through sensitivity analysis, a general procedure for optimization of the design target with respect to the design variables has been established.

Fatigue reliability analysis of welded joints of a TLP tether system

  • Amanullah, M.;Siddiqui, N.A.;Umar, A.;Abbas, H.
    • Steel and Composite Structures
    • /
    • v.2 no.5
    • /
    • pp.331-354
    • /
    • 2002
  • Tethers of Tension Leg Platform (TLP) are a series structural system where fatigue is the principal mode of failure. The present study is devoted to the fatigue and fatigue fracture reliability study of these tethers. For this purpose, two limit state functions have been derived. These limit state functions are based on S-N curve and fracture mechanics approaches. A detailed methodology for the reliability analysis has then been presented. A sensitivity analysis has been carried out to study the influence of various random variables on tether reliability. The design point, important for probabilistic design, is located on the failure surface. Effect of wind, water depth, service life and number of welded joints are investigated. The effect of uncertainties in various random variables on tether fatigue reliability is highlighted.

The hybrid uncertain neural network method for mechanical reliability analysis

  • Peng, Wensheng;Zhang, Jianguo;You, Lingfei
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.510-519
    • /
    • 2015
  • Concerning the issue of high-dimensions, hybrid uncertainties of randomness and intervals including implicit and highly nonlinear limit state function, reliability analysis based on the hybrid uncertainty reliability mode combining with back propagation neural network (HU-BP neural network) is proposed in this paper. Random variables and interval variables are as input layer of the neural network, after the training and approximation of the neural network, the response variables are obtained through the output layer. Reliability index is calculated by solving the optimization model of the most probable point (MPP) searching in the limit state band. Two numerical cases are used to demonstrate the method proposed in this paper, and finally the method is employed to solving an engineering problem of the aerospace friction plate. For this high nonlinear, small failure probability problem with interval variables, this method could achieve a good analysis result.