DOI QR코드

DOI QR Code

Limit State Assessment of SCH80 3-inch Steel Pipe Elbows Using Moment-Deformation Angle Relationship

모멘트-변형각의 관계를 이용한 SCH80 3인치 강재배관엘보의 한계상태 평가

  • 김성완 (부산대학교 지진방재연구센터) ;
  • 윤다운 (부산대학교 지진방재연구센터) ;
  • 정진환 (부산대학교 건설융합학부) ;
  • 김성도 (경성대학교 건설환경도시공학부)
  • Received : 2020.05.08
  • Accepted : 2020.06.29
  • Published : 2020.06.30

Abstract

To conduct probabilistic seismic fragility analysis for nuclear power plants, it is very important to define the failure modes and criteria that can represent actual serious accidents. The seismic design criteria for piping systems, however, cannot fully reflect serious accidents because they are based on plastic collapse and cannot express leakage, which is the actual limit state. Therefore, it is necessary to clearly define the limit state for reliable probabilistic seismic fragility analysis. Therefore, in this study, the limit state of the SCH80 3-inch steel pipe elbow, the vulnerable part of piping systems, was defined as leakage, and the in-plane cyclic loading test was conducted. Moreover, an attempt was made to quantify the failure criteria for the steel pipe elbow using the damage index, which was based on the dissipated energy that used the moment-deformation angle relationship.

원자력발전소의 확률론적 지진취약도 분석을 수행하기 위해서는 실제 중대 사고를 표현할 수 있는 파괴모드와 파괴기준의 정의가 중요하다. 그러나 배관시스템의 내진설계기준은 소성붕괴로서 실제 한계상태인 누수를 표현하지 못하므로 중대 사고를 충분히 반영하지 못하고 있다. 따라서 신뢰성 있는 확률론적 지진취약도 분석을 위해서는 한계상태를 명확히 정의할 필요가 있다. 따라서 본 연구에서는 배관시스템의 취약부위인 SCH80 3인치 강재배관엘보의 한계상태를 누수로 정의하고 면내반복가력시험을 수행하였다. 또한 모멘트-변형각의 관계의 소산 에너지에 기반을 둔 손상도를 이용하여 강재배관엘보의 파괴기준을 정량화하고자 하였다.

Keywords

References

  1. Bannon, H., Irvine, H. M., and Biggs, J. M. (1981), Seismic damage in reinforced concrete frames, Journal of the Structural Division, 107(9), 1713-1729. https://doi.org/10.1061/JSDEAG.0005778
  2. Cheng, Z. B., and Shi, Z. F. (2018), Composite periodic foundation and its application for seismic isolation, Earthquake Engineering and Structural Dynamics, 47(4), 925-944. https://doi.org/10.1002/eqe.2999
  3. Choi, H. S., Cheung, J. H., Gae, M. S., Seo, Y. D., and Kim, M. K. (2013), Seismic capacity test of nuclear piping system using multi-platform shake table, Journal of the Earthquake Engineering Society of Korea, 17, 21-31. https://doi.org/10.5000/EESK.2013.17.1.021
  4. Firoozabad, E. S., Jeon, B. G., Choi, H. S., and Kim, N. S. (2015), Seismic fragility analysis of seismically isolated nuclear power plants piping system, Nuclear Engineering and Design, 284, 264-279. https://doi.org/10.1016/j.nucengdes.2014.12.012
  5. Gersak, J. (1989), Study of the yield point of the thread, International Journal of Clothing Science and Technology, 10(3/4), 244-251. https://doi.org/10.1108/09556229810693654
  6. Jang, H. W., Hahm, D. G., Jung, J. W., and Hong, J. W. (2018), Effective numerical approach to assess low-cycle fatigue behavior of pipe elbows, Nuclear Engineering and Technology, 50(5), 758-766. https://doi.org/10.1016/j.net.2018.01.020
  7. Jeon, B. G., Kim, S. W., Choi, H. S., Park, D. U., and Kim, N. S. (2017), A failure estimation method of steel pipe elbows under in-plane cyclic loading, Nuclear Engineering and Technology, 49(1), 245-253. https://doi.org/10.1016/j.net.2016.07.006
  8. Kasahara, N., Nakamura, I., Machida, H., and Nakamura, H. (2014), Research plan on failure modes by extreme loadings under design extension conditions, ASME 2014 Pressure Vessels and Piping Conference, Anaheim, California, USA, PVP2014-28349.
  9. Kim, S. W., Choi, H. S., Jeon, B. G., and Hahm, D. G. (2019b), Low-cycle fatigue behaviors of the elbow in a nuclear power plant piping system using the moment and deformation angle, Engineering Failure Analysis, 96, 348-361. https://doi.org/10.1016/j.engfailanal.2018.10.021
  10. Kim, S. W., Choi, H. S., Jeon, B. G., Hahm, D. G., and Kim, M. K. (2018), Strain and deformation angle for a steel pipe elbow using image measurement system under in-plane cyclic loading, Nuclear Engineering and Technology, 50(1), 190-202. https://doi.org/10.1016/j.net.2017.11.001
  11. Kim, S. W., Jeon, B. G., Cheung, J. H., and Kim, S. D. (2019c), Low-cycle Fatigue Behaviors of the Steel Pipe Tee of a Nuclear Power Plant Using Image Signals, Journal of the Korea Institute for Structural Maintenance and Inspection, 23(6), 77-83.
  12. Kim, S. W., Jeon, B. G., Hahm, D. G., and Kim, M. K. (2019a), Seismic fragility evaluation of the base-isolated nuclear power plant piping system using the failure criterion based on stress-strain, Nuclear Engineering and Technology, 51(2), 561-572 https://doi.org/10.1016/j.net.2018.10.006
  13. Kiran, A. R., Reddy, G. R., and Agrawal, M. K. (2018), Experimental and numerical studies of inelastic behavior of thin walled elbow and tee joint under seismic load, Thin-Walled Structures, 127, 700-709. https://doi.org/10.1016/j.tws.2018.03.010
  14. Nakamura, I., Otani, A., and Shiratori, M. (2010), Comparison of failure modes of piping systems with wall thinning subjected to in-plane, out-of-plane, and mixed mode bending under seismic load: An experimental approach, Journal of Pressure Vessel Technology, 132, 031001. https://doi.org/10.1115/1.4001517
  15. Ravi Kiran, A., Reddy, G. R., and Agrawal, M. K. (2019), Seismic fragility analysis of pressurized piping systems considering ratcheting: A case study, International Journal of Pressure Vessels and Piping, 169, 26-36. https://doi.org/10.1016/j.ijpvp.2018.11.013
  16. Takahashi, K., Watanabe, S., Ando, K., Hidaka, A., Hisatsune, M., and Miyazaki, K. (2009), Low cycle fatigue behaviors of elbow pipe with local wall thinning, Nuclear Engineering Design, 239, 2719-2727. https://doi.org/10.1016/j.nucengdes.2009.09.011
  17. Urabe, Y., Takahashi, K., and Ando, K. (2012), Low cycle fatigue behavior and seismic assessment for elbow pipe having local wall thinning, Journal of Pressure Vessel Technology, 134, 041801. https://doi.org/10.1115/1.4005870
  18. Urabe, Y., Takahashi, K., Sato, K., and Ando, K. (2013), Low cycle fatigue behavior and seismic assessment for pipe bend having local wall thinning-influence of internal pressure, Journal of Pressure Vessel Technology, 135, 2-6.
  19. Varelis, G. E., and Karamanos, S. A. (2015), Low-cycle fatigue of pressurized steel elbows under in-plane bending, Journal of Pressure Vessel Technology, 137, 011401. https://doi.org/10.1115/1.4027316
  20. Xu, Z. D., Ge, T., and Miao, A. (2019), Experimental and theoretical study on a novel multi-dimensional vibration isolation and mitigation device for large-scale pipeline structure, Mechanical Systems and Signal Processing, 129, 546-567. https://doi.org/10.1016/j.ymssp.2019.04.054
  21. Yu, C. C., Nolisetti, C., Coleman, J. L., Kosbab, B., and Whittaker, A. S. (2018), Using seismic isolation to reduce risk and capital cost of safety-related nuclear structures, Nuclear Engineering and Design, 7, 268-284.