• Title/Summary/Keyword: Limit of experimental method

Search Result 490, Processing Time 0.024 seconds

Finite Element Analysis of Axisymmetric Hydrostatic Bulging (축대칭 정수압 벌징의 유한요소 해석)

  • Baek, Nam-Ju;Kang, Dae-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.1 no.3
    • /
    • pp.71-84
    • /
    • 1984
  • This paper examined strain distribution and radius of curvature of the bulge by finite element method and investigated limit polar thickness strain to predict the formability of sheet metal as we substituted effective strain and the radius of curvature obtained by FEM into instability condition equation successively. In experiment, the radius of curvature and limit polar thickness strainwere obtained by Moire method. Also, a concent- ric set of photogrid circles was used to measure the strain of arbitrary point and mild steel was used as material. This results obtained are as follows: 1) The radius of curvature obtained by FEM is in good agreement with the Moire experimental value. 2) The polar thickness strain is getting larger as the inside is approached from the edge. This means that fracture occurred near the ploe. 3) The circumferential strains agree closely with the meridian strains and the polar thickness strain is about twice the circumferential (or meridian) strain. This result agrees with the fact that anisotropy coefficient (R-value) obtained by tensile test is about one. 4) The theoretical results of limit polar thickness strain obtained by authors' method are better agreement with experimental results than other theoretical results. Therefore, we can better predict the formability of sheet metal with authors' method.

  • PDF

The statistical two-order and two-scale method for predicting the mechanics parameters of core-shell particle-filled polymer composites

  • Han, Fei;Cui, Junzhi;Yu, Yan
    • Interaction and multiscale mechanics
    • /
    • v.1 no.2
    • /
    • pp.231-250
    • /
    • 2008
  • The statistical two-order and two-scale method is developed for predicting the mechanics parameters, such as stiffness and strength of core-shell particle-filled polymer composites. The representation and simulation on meso-configuration of random particle-filled polymers are stated. And the major statistical two-order and two-scale analysis formulation is briefly given. The two-order and two-scale expressions for the strains and stresses of conventionally strength experimental components, including the tensional or compressive column, the twist bar and the bending beam, are developed by means of their classical solutions with orthogonal-anisotropic coefficients. Then a new effective mesh generation algorithm is presented. The mechanics parameters of core-shell particle-filled polymer composites, including the expected stiffness parameters, minimum stiffness parameters, and the expected elasticity limit strength and the minimum elasticity limit strength, are defined by means of the stiffness coefficients and elasticity strength criterions for core, shell and matrix. Finally, the numerical results for predicting both stiffness and elasticity limit strength parameters are compared with the experimental data.

Friction-Induced Vibration of Brake Lining Pad (브레이크 라이닝 패드의 마찰 진동)

  • Choi, Y.S.;Jung, S.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.93-100
    • /
    • 1994
  • Friction-induced vibration characteristics of automotive brake lining pad are investigated on the basis of experimental observations from a pin-on-disk type friction-induced vibration experimental apparatus. The measured responses of the experimental apparatus show limit cycles of quasi-harmonics type and beat phenomena due to the velocity dependence of friction force. To deduce the friction coefficient vs. relative velocity Lienard method is adopted with least square fit. It shows Scurve which characterizes a quasi-harmonic vibration. The calculation of amplitudes and friquencies of the limit cycles is done using slowly changing phase and amplitude method. The theoretical and numerical results show fairly good agreements with those of experiments.

  • PDF

A study on expansion of lean burn limit with direct injection of the heavy-duty CNG engine (대형 CNG기관의 직접분사화에 의한 희박한계확장)

  • Park, Jung-Il;Chung, Chan-Moon;Noh, Ki-Chul;Lee, Jong-Tai
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3282-3287
    • /
    • 2007
  • Lean combustion is one of the most promising method for increasing engine efficiency and reducing the exhaust emission from SI gas engines. Due to the possibility of partial burn and misfire, however, under lean burn operation, stable flame kernel formation and fast burn rate are needed to guarantee a successful subsequent combustion. Experiment data were obtained on a single-cylinder CNG fueled SI engine to investigate the effect of direct injection, spark timing and variation of injection timing. Experimental results show that lean burn limit is ${\lambda}$=1.3 with port injection, and expansion of lean burn limit ${\lambda}$=1.4 with direct injection method, due to increase of turbulence intensity in cylinder and stratified charge. Combustion duration in lean region is improved by using the variation of injection timing.

  • PDF

STABILITY LIMIT PROPERTIES OF CONTROL SYSTEMS ON THE SPACE OF ADJUSTING PARAMETERS (조정파라미터 공간에서의 제어계 안정한계 특성)

  • 최순만
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.135-142
    • /
    • 2000
  • The adjusting parameter set which enable control systems to locate on stability limit can be derived from theoretical or trial methods for an existing real system. The data from the results are much available to keep a system in the Proper stability condition even to site engineers who are inexperienced in the control system. In this paper, a general one loop control system was adopted for a model system the process of which was assumed to consist of a time-delay element and a first order-lag element in series. After obtaining the corresponding parameter set for the model system by mathematical procedures, their loci on the parameter space was taken according to frequency change. The parameter set loci of stability limit showed unique pattern, and particularity , the curves on the Kg-Ti parameter space were able to be generalized in the form of, an unique exponential formula. These properties were also compared with the results taken from experimental procedures by Nyquist response method and Ziegler & Nichols method on the time domain, and both results were confirmed to be nearly same.

  • PDF

Stability Limit Properties of a Control System on the Space of Adjustable Parameters (조정파라미터 공간에서의 제어계 안정한계 특성)

  • 최순만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.351-356
    • /
    • 2001
  • In this paper, a general one-loop control system was assumed as a model system which has a time-delay element connected with a first order-lag element in series. After the corresponding parameter set causing stability limit condition for the model system was obtained by mathematical procedures, their loci on the parameter space was taken according of frequency change,. The parameter set loci of stability limit showed a specific pattern, and particularly the curves on the Kp-Ti parameter space were able to generalized in the form of an exponential formula. These properties were also compared with the results taken from experimental procedures by Nyquist response method and Ziegler & Nichols method on the time domain, and both results were confirmed to be nearly same.

  • PDF

Estimation of liquid limit of cohesive soil using video-based vibration measurement

  • Matthew Sands;Evan Hayes;Soonkie Nam;Jinki Kim
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.175-182
    • /
    • 2023
  • In general, the design of structures and its construction processes are fundamentally dependent on their foundation and supporting ground. Thus, it is imperative to understand the behavior of the soil under certain stress and drainage conditions. As it is well known that certain characteristics and behaviors of soils with fines are highly dependent on water content, it is critical to accurately measure and identify the status of the soils in terms of water contents. Liquid limit is one of the important soil index properties to define such characteristics. However, liquid limit measurement can be affected by the proficiency of the operator. On the other hand, dynamic properties of soils are also necessary in many different applications and current testing methods often require special equipment in the laboratory, which is often expensive and sensitive to test conditions. In order to address these concerns and advance the state of the art, this study explores a novel method to determine the liquid limit of cohesive soil by employing video-based vibration analysis. In this research, the modal characteristics of cohesive soil columns are extracted from videos by utilizing phase-based motion estimation. By utilizing the proposed method that analyzes the optical flow in every pixel of the series of frames that effectively represents the motion of corresponding points of the soil specimen, the vibration characteristics of the entire soil specimen could be assessed in a non-contact and non-destructive manner. The experimental investigation results compared with the liquid limit determined by the standard method verify that the proposed method reliably and straightforwardly identifies the liquid limit of clay. It is envisioned that the proposed approach could be applied to measuring liquid limit of soil in practical field, entertaining its simple implementation that only requires a digital camera or even a smartphone without the need for special equipment that may be subject to the proficiency of the operator.

Evaluation for Relative Safety of RC Slab Bridge of Applying Limit State Design Code on Korean Highway Bridge (도로교설계기준 한계상태설계법을 적용한 RC슬래브교의 상대 안전도 평가)

  • Park, Jin-Woo;Hwang, Hoon-Hee;Kang, Sin-Oh;Cho, Kyung-Sik;Park, Woo-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.5
    • /
    • pp.41-48
    • /
    • 2013
  • This paper is intended to provide the background information and justification for Korean highway bridge design code(limit state design)(2012). Limit state design method calculates reliability index and probability of failure through the analysis of the reliability of the experimental database. It has become possible to perform the economical and consistent design by evaluating the safety of a structure quantitatively. In this paper, we used the design specifications of RC slab bridge of superstructure form of Road Design Manual in Part 5 bridge built in highway bridge. This study conducted structural analysis using the method of frame structure theory, design and analysis of bridge by limit state design method, the design code including various standards and Load model applied Korean highway bridge design code limit state design(KHBDC;2012). As a result, it analyzed the effect of safety through comparison. Showing effect of improvement the safety factor and comparing the value of the result, it is determined to be capable of economical design and safety. Furthermore, limit state design method was able to determine many redundant force of cross-section compared with existing design method. It is determined that it can reduce the overall amount because of the reduction of the cross-section and girder depth.

Experimental Study on the Forming Limit Curve of Aluminum Alloy Sheets using Digital Image Correlation (디지털 이미지 상관관계를 이용한 알루미늄 합금 판재의 성형한계도 평가)

  • Kim, Yongbae;Park, Jungsoo;Song, Junghan
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.1
    • /
    • pp.7-12
    • /
    • 2015
  • Sheet metal formability can be defined as the ability of metal to deform without necking or fracture into desired shape. Every sheet metal can be deformed without failure only up to a certain limit, which is normally known as forming limit curve(FLC). In this paper, the dome stretching tests and tensile tests have been performed to obtain forming limit curve of aluminum alloy. During the experiment, failure strain is measured using digital image correlation(DIC) method. DIC method is a whole-field measurement technique that acquires surface displacements and strains from images information which characterized a random speckle as intensity grey levels. Recently years, this DIC method is being developed and used increasingly in various research. DIC results demonstrated the usefulness and ability to determine a strain.

Linear elastic and limit state solutions of beam string structures by the Ritz-method

  • Xue, Weichen;Liu, Sheng
    • Structural Engineering and Mechanics
    • /
    • v.35 no.1
    • /
    • pp.67-82
    • /
    • 2010
  • The beam string structure (BSS) has been widely applied in large span roof structures, while no analytical solutions of BSS were derived for it in the existing literature. In the first part of this paper, calculation formulas of displacement and internal forces were obtained by the Ritz-method for the most commonly used arc-shaped BSS under the vertical uniformly distributed load and the prestressing force. Then, the failure mode of BSS was proposed based on the static equilibrium. On condition the structural stability was reliable, BSS under the uniformly distributed load would fail by tensile strength failure of the string, and the beam remained in the elastic or semi-plastic range. On this basis, the limit load of BSS was given in virtue of the elastic solutions. In order to verify the linear elastic and limit state solutions proposed in this paper, three BSS modal were tested and the corresponding elastoplastic large deformation analysis was performed by the ANSYS program. The proposed failure mode of BSS was proved to be correct, and the analytical results for the linear elastic and limit state were in good agreement with the experimental and FEM results.