• Title/Summary/Keyword: Likelihood ratio

Search Result 722, Processing Time 0.026 seconds

CHAIN DEPENDENCE AND STATIONARITY TEST FOR TRANSITION PROBABILITIES OF MARKOV CHAIN UNDER LOGISTIC REGRESSION MODEL

  • Sinha Narayan Chandra;Islam M. Ataharul;Ahmed Kazi Saleh
    • Journal of the Korean Statistical Society
    • /
    • v.35 no.4
    • /
    • pp.355-376
    • /
    • 2006
  • To identify whether the sequence of observations follows a chain dependent process and whether the chain dependent or repeated observations follow stationary process or not, alternative procedures are suggested in this paper. These test procedures are formulated on the basis of logistic regression model under the likelihood ratio test criterion and applied to the daily rainfall occurrence data of Bangladesh for selected stations. These test procedures indicate that the daily rainfall occurrences follow a chain dependent process, and the different types of transition probabilities and overall transition probabilities of Markov chain for the occurrences of rainfall follow a stationary process in the Mymensingh and Rajshahi areas, and non-stationary process in the Chittagong, Faridpur and Satkhira areas.

Testing for Failure Rate Ordering between Survival Distributions

  • Park, Chul-Gyu
    • Journal of the Korean Statistical Society
    • /
    • v.23 no.2
    • /
    • pp.349-365
    • /
    • 1994
  • We develop in this paper the likelihood ratio test (LRT) for testing $H_1 : F_1 \preceq F_2$ against $H_2 - H_1$ where $H_2$ imposes no restriction on $F_1$ and $F_2$ and '$\preceq$' means failure rate ordering. Both one and two-sample problems will be considered. In the one-sample case, one of the two distributions is known, while we assume in the other case both are unknown. We derive the asymptotic null distribution of the LRT statistic which will be of chi-bar-square type. The main issue here is to determine the least favorable distribution which is stochastically largest within the class of null distributions.

  • PDF

TESTS FOR VARYING-COEFFICIENT PARTS ON VARYING-COEFFICIENT SINGLE-INDEX MODEL

  • Huang, Zhensheng;Zhang, Riquan
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.385-407
    • /
    • 2010
  • To study the relationship between the levels of chemical pollutants and the number of daily total hospital admissions for respiratory diseases and to find the effect of temperature/relative humidity on the admission number, Wong et al. [17] introduced the varying-coefficient single-index model (VCSIM). As pointed out, it is a popular multivariate nonparametric fitting technique. However, the tests of the model have not been very well developed. In this paper, based on the estimators obtained by the local linear technique, the average method and the one-step back-fitting technique in the VCSIM, the generalized likelihood ratio (GLR) tests for varying-coefficient parts on the VCSIM are established. Under the null hypotheses the new proposed GLR tests follow the $\chi^2$-distribution asymptotically with scale constant and degree of freedom independent of the nuisance parameters, known as Wilks phenomenon. Simulations are conducted to evaluate the test procedure empirically. A real example is used to illustrate the performance of the testing approach.

ROBUST TEST BASED ON NONLINEAR REGRESSION QUANTILE ESTIMATORS

  • CHOI, SEUNG-HOE;KIM, KYUNG-JOONG;LEE, MYUNG-SOOK
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.145-159
    • /
    • 2005
  • In this paper we consider the problem of testing statistical hypotheses for unknown parameters in nonlinear regression models and propose three asymptotically equivalent tests based on regression quantiles estimators, which are Wald test, Lagrange Multiplier test and Likelihood Ratio test. We also derive the asymptotic distributions of the three test statistics both under the null hypotheses and under a sequence of local alternatives and verify that the asymptotic relative efficiency of the proposed test statistics with classical test based on least squares depends on the error distributions of the regression models. We give some examples to illustrate that the test based on the regression quantiles estimators performs better than the test based on the least squares estimators of the least absolute deviation estimators when the disturbance has asymmetric and heavy-tailed distribution.

Some Tsets for Variance Changes in Time Series with a Unit Root

  • Park, Young-J.;Cho, Sin-Sup
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.1
    • /
    • pp.101-109
    • /
    • 1997
  • For the detection on variance changes in the nonstationary time series with a unit root two types of test statistics are proposed, of which one is based on the cumulative sum of squares and the other is based on the likelihood ratio test. The properties of the cusum type test statistic are derived and the performance of two tests in small samples are compared through Monte Carlo study. It is ovserved that the test based on the cumulative sum of squares can detect a samll change in the variance faster than the one based on the likelihood ratio.

  • PDF

Noninformative Priors for Fieller-Creasy Problem using Unbalanced Data

  • Kim, Dal-Ho;Lee, Woo-Dong;Kang, Sang-Gil
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.71-84
    • /
    • 2005
  • The Fieller-Creasy problem involves statistical inference about the ratio of two independent normal means. It is difficult problem from either a frequentist or a likelihood perspective. As an alternatives, a Bayesian analysis with noninformative priors may provide a solution to this problem. In this paper, we extend the results of Yin and Ghosh (2001) to unbalanced sample case. We find various noninformative priors such as first and second order matching priors, reference and Jeffreys' priors. The posterior propriety under the proposed noninformative priors will be given. Using real data, we provide illustrative examples. Through simulation study, we compute the frequentist coverage probabilities for probability matching and reference priors. Some simulation results will be given.

  • PDF

ON ASYMPTOTIC TESTS IN TEREE-FACTOR FACTORIAL DESIGNS WITH NO REPLICATIONS

  • See, Kyoung-Ah
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.1
    • /
    • pp.31-50
    • /
    • 1999
  • We revisit the problems of testing three-factor classifica-tion models with a single observation per cell. A common approach in analyzing such nonreplicated data is to omit the highest order in-teraction and regard it as error. This paper discusses the use of a multiplicative model(See and Smith 1996 and 1998) which is applied on residuals in order to separate the variablility due to three-factor interaction from what is counted as random error. in particualr to test the significance of the interaction term we derived an approxi-mated distribution of the likelihood ratio test statistic based on the quadrilinear model known as Tucher's three-mode principal compo-nent model. The derivation utilizes the distribution of the eignevalues of the Wishart matrix.

Performance Evaluation of Nonkeyword Modeling and Postprocessing for Vocabulary-independent Keyword Spotting (가변어휘 핵심어 검출을 위한 비핵심어 모델링 및 후처리 성능평가)

  • Kim, Hyung-Soon;Kim, Young-Kuk;Shin, Young-Wook
    • Speech Sciences
    • /
    • v.10 no.3
    • /
    • pp.225-239
    • /
    • 2003
  • In this paper, we develop a keyword spotting system using vocabulary-independent speech recognition technique, and investigate several non-keyword modeling and post-processing methods to improve its performance. In order to model non-keyword speech segments, monophone clustering and Gaussian Mixture Model (GMM) are considered. We employ likelihood ratio scoring method for the post-processing schemes to verify the recognition results, and filler models, anti-subword models and N-best decoding results are considered as an alternative hypothesis for likelihood ratio scoring. We also examine different methods to construct anti-subword models. We evaluate the performance of our system on the automatic telephone exchange service task. The results show that GMM-based non-keyword modeling yields better performance than that using monophone clustering. According to the post-processing experiment, the method using anti-keyword model based on Kullback-Leibler distance and N-best decoding method show better performance than other methods, and we could reduce more than 50% of keyword recognition errors with keyword rejection rate of 5%.

  • PDF

Tests to Detect Changes in Micro-Flora Composition;

  • Kim, Donguk;Yang, Mark C.K.
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.1
    • /
    • pp.211-224
    • /
    • 2003
  • Good's lambda test, a permutation test used to detect the changes of microorganism composition under two pathological conditions, has been quite popular for studying the micro-flora responsible for periodontal disease. A vast number of different micro-flora in the mouth renders the traditional chi-square test inapplicable. The main purpose of this paper is to evaluate the power of this test so that the sample size can be determined at the design stage. The robustness of this test and its comparison to two other intuitive tests are also presented. It is found that a permutation test based on likelihood ratio is more powerful than the lambda test in our simulated cases.

Scene Change Detection with 3-Step Process (3단계 과정의 장면 전환검출)

  • Yoon, Shin-Seong;Won, Rhee-Yang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.6
    • /
    • pp.147-154
    • /
    • 2008
  • First, this paper compute difference value between frames using the composed method of $X^2$ histogram and color histogram and the normalization. Next, cluster representative frame was decided by using the clustering for distance and the k-mean grouping. Finally, representative frame of group was decided by using the likelihood ratio. Proposed method can be known by experiment as outstanding of detection rather than other methods, due to computing of difference value, clustering and grouping, and detecting of representative frame.

  • PDF