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ABSTRACT

We develop in this paper the likelihood ratio test(LRT) for testing
H, : F| < F, against H, — H, where H, imposes no restriction on
Fy and F, and ‘<’ means failure rate ordering. Both one and two-
sample problems will be considered. In the one-sample case, one of
the two distributions is known, while we assume in the other case both
are unknown. We derive the asymptotic null distribution of the LRT
statistic which will be of chi-bar-square type. The main issue here is to
determine the least favorable distribution which is stochastically largest
within the class of null distributions.
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1. INTRODUCTION

Failure rate ordering between two survival distributions has been widely
studied in statistical inference, reliability theory and actuarial science. When
we compare the survival times of two populations(or groups), a typical measure
for comparison is mean survival time. Another type of comparison is based
upon the ordinary stochastic ordering which is defined by the inequality of
distribution functions(Fx(z) < Fy(z),z € R'). This is a stronger concept in
the sense that stochastic ordering implies mean value ordering. More stringent
comparison will be based upon failure rate ordering which is stronger than
ordinary stochastic ordering.

Let Z be a continuous random variable with its probability density function
f. The failure rate of Z is defined as (t) = f(t)/F(t) for t € (—o0, F71(1))
where F~1(1) = sup{t : F(t) < 1} and F(t) = 1~ F(t). The discrete version of
this with finite support S = {t1,t3,..., %} will be y(t;) = p;/ & pi,t; € S
where —oo < t; < t3 < -+- < t; < oco. Suppose that 7, and -, are the
failure rate functions of random variables Z; and Z, with their CDF’s F
and F; respectively. Let the binary relation ‘<X’ denote failure rate ordering
between Z; and Z,. That is, the relation Z; < Z,(orFy < F3) is equivalent to
11(t) > 72(t) for any t¢.

Testing problems related to failure rate ordering are discussed in many pa-
pers. Kochar(1979, 1981) proposes a generalized U-statistic and a linear rank
statistic for testing the equality of failure rates against ordered failure rates
in two populations. He shows that these tests achieve high Pitman asymp-
totic relative efficiency over a broad spectrum of alternatives. For the same
problem, Cheng(1985) develops another rank test which is asymptotically un-
biased and consistent. He demonstrates by Monte Carlo study that his test is
more powerful than Kochar’s rank test(1981) and Savage’s U-test(1956) when
sample sizes are small. Joe and Proschan(1984) and Aly(1988) note that the
failure rate ordering (v < vg) can be expressed as the inequality between 100
percentile residual life functions(ga,r < ¢o¢). Depending upon the value of «,

they suggest a class of rank tests which contains Kochar’s(1981) as a special
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case. Bagal and Kochar(1986) introduce a measure of deviation between two

distributions F' and G which is given by Ay(F,G) = [ [é(z,y)dF(z)dG(y)
>y

where 8(z,y) = [F(z)/F(y)]F — [G(z)/G(y)]*. Based upon Ax(F,Q), they de-
velop a class of distribution-free tests and show that the test with k& = 0.6 has
good overall performance.

Likelihood ratio principle can be also applied to the similar problems. Dyk-
stra, Kochar and Robertson(1990) consider the competing risks model and test
the proportionality of two cause specific hazard rates against the monotonicity
in their ratio. For grouped data, they derive a chi-bar-square type of asymp-
totic distribution for the LRT statistic while a test based upon U-statistic is
proposed in the continuous case. In another joint work by Dykstra, Kochar and
Robertson(1991), nonparametric maximum likelihood estimates of N survival
functions are obtained under uniform stochastic ordering constraints and used
to test equality of distributions against uniform stochastic ordering alternative.

As reviewed earlier, most of previous studies are concentrated on testing
equality of distributions under the presumption that they are ordered in terms
of failure rate(y; > 72). However, testing procedure for this presumption has
never been suggested. In this context, we consider failure rate ordering between
two distributions as the null hypothesis. First, we discuss the consistency of the
maximum likelihood estimates of the distributions under failure rate ordering.
And then, we will determine the least favorable distribution in the class of the
asymptotic null distributions of the LRT statistic. Both of one and two-sample

problems will be solved.

2. CONSISTENCY OF MLE

Let S = {1,2,...,k} be the common support of two discrete random vari-
ables which follow distributions F} and F; respectively. Based upon a random
sample, Xi1, Xiy, ..., Xin, from the distribution F;, we define n;; and m;; as
follows : n;; = #{l: Xy = j} and m;; = Zf:j ni, 7 € 5,2 = 1,2. Then, the
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random vector (n;;, Nz, ...,ny%) follows a multinomial distribution with pa-
rameters n;, pi, pi2, - - - , pir Where p;; = Pr[X; = j]. In the case of one-sample

problem, we assume that F, is known and the sample is taken from Fj only.
2.1. One-sample case.

Given a random sample of size n; from a unknown distribution Fy, we will
find the maximum likelihood estimate of £} under F} < Fy(or equivalently
Y1 > 72), where F, is known.

The likelihood function under the previous sampling scheme is given by
k B o

From the definition, the failure rate ordering constraints are
P P2
P2
Ypu X pu
=3 I=y3

J=12,..., k-1 (2.2)

Since p;;/ Z;C_:j piu=1-— Zf=j+1 pi1/ Zf:j pil, the constraints in (2.2) are equiv-
alent to
01j§02j, j:1,2,...,k—1, (23)

where 0;; = Fi(j)/F;(j — 1). In this one-sample problem, we assume that 8,,’s
are known values.

Noting that F;(0) = 1, we can express Fi(j) as Fi(j) = i 1 0:r. Thus, the
likelihood function (2.1) becomes

29’”“‘"“ - 01, (2.4)

where m,; = Zf:j iy
By maximizing the log-likelihood function, we get the unrestricted MLE of
01]" i.e.,

by = — Y =12 .. k-1 (2.5)



Testing for Failure Rate Ordering

Since k —1 constraints in (2.3) are working independently, the restricted MLE

1]_"1](

of #,; is obtained by maximizing ,; —6,;)™ individually under a single

constraint #;; < 6,;. Therefore, the MLE of 6,; under (2.3) is
01, = min(élj, 6,,). (2.6)

The expression in (2.6) can be denoted by P(y;7;) which represents the closest
point of the set j; = { € R' : o < y,} to ;. By the invariance property of
MLE, the MLE of F} under F; < F, is expressed as

II 4, (2.7)

{7y<x}
It can be shown from the strong law of large numbers that both restricted and
unrestricted MLE’s of 8, are strongly consistent when Fy < F,. Based upon
this almost sure convergence of the estimates, we can establish the following

theorem.

Theorem 2.1. Suppose Fy and F; are discrete CDF’s with common finite
support S. Let FY¥ be the MLE of F} under failure rate ordering F; < F, with
Fy known. Then, if Fy X Fy, FT converges uniformly to F; as the sample size

nq goes to infinity.
2.2. Two-sample case.

Assuming that distributions F; and F5 are both unknown, we will find their
MLE’s under F; < F, and also discuss the consistency of those MLE’s when
the ordering is true. Consider random samples of sizes n; and n, respectively
from F; and F; with common support S. Define n;; as the number of the
observations in the ith sample which are equal to 5. Then, the likelihood
function is

2 k B
=TIII[RG -1 - FG)]™. (2.8)
i=1 j=1
Fi'} - 5y for
any ¢ and j. With this reparameterization, the likelihood function is expressed

As we did in the previous section, we reparameterize by setting 8;; =

353
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as
2 kooj-1 ; .
o = ja-o T - 1o
i=1 s e 14
2 ko 1-1 o
R (1 O
= 1= r=
Now,
ki1
II 110 T 11 o - Hamzr—nw
j=2r=l r=1 j=r+1

where m;, = Zsz n;. Thus, we can rewrite the likelihood function as

HIWW”U1—mﬁ%} (2.9)

J=1 i=1

As was shown earlier, the failure rate ordering constraints are equivalent to
01; <0, 3=12,...,k—1, (2.10)

where 0;; and §,; are both unknown.
The unrestricted MLE’s of §;;’s are easily obtained by maximizing the log-

likelihood function and these are

b, =010 19 k—landi=1,2 (2.11)

m;;
As discussed in Dykstra et al(1991), the restricted MLE’s of 6;;’s are obtained
simply by maximizing the jth term [T2_, Zl”‘n" (1 —6;;)™ under the j-th con-
straint 6;; < #5; because the constraints in (2.10) work independently. For each
7, this is a bioassay problem discussed in Example 1.5.1 of Robertson, Wright
and Dykstra(1988). Thus, the solution (6;;,

the unrestricted MLE (élj,ég]‘) with weights (rmq;,m;). That is,

63;) is the isotonic regression of

é,‘j, if élj S égj
o = X . . o, i=12. . k—1. (2.12)
B S R
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Let 8; = (615,02;) and my; = (mqj,my;)". Then, 8 can be also denoted by
Py, (éjl]j) which is the closest point of 3; = {z € R* : 21 < x,} to Q} in the sense
of the weighted Euclidian distance. These restricted and unrestricted estimates
of 6;;’s are strongly consistent if the failure rate ordering is true. Let n — oo
mean that sample sizes ny and ny go to infinity such that ny/n; — (> 0).
Then, using the strong consistency of those MLE’s under F; < Fj, we can

prove the following theorem.

Theorem 2.2. Let F* be the MLE of CDF F; under the failure rate
ordering Fy < F, where F; and F, are both unknown. Then, if F; < Fy, Fr

1

converges uniformly to F; as p — oo.

3. HYPOTHESIS TESTING

3.1. One-sample problem.

Assuming that F’, is known, we consider in this section a problem of testing
H, : Fy X F, against H, — H; where H; puts no restriction on Fy. If we set
0;; = Fi(5)/Fi(j — 1), we can rewrite the hypotheses as

H]S 91j§02]-, ]:1,2,,k'—].
H; : No restriction on §; = (611,612,...,01%-1) (3.1)
Under this reparameterization, the likelihood function becomes
H Hm“_"” 1 —8;;)™s. (3.2)

Using the MLE’s of 6;; in (2.5) and (2.6), we can construct a test based upon
the likelihood ratio, Ay, = ﬁ(Q{)/E(él), which rejects the null hypothesis H;
for the large values of T1, = —21n A;,. This LRT statistic is

k-1
Ty, = —22[ (ma; —n1;)(In 05— € 61;) + 71, {In(1 - 65;) ~In(1 - 6,,) }]. (3.3)
=1

J=

355
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Expanding In8;; about élj, we have

* H * A 2 ¢
In6;; = lndy; + 51](% b1;) — 27%(91]‘ — 015)", (3.4)
where a4, is a value between élj and 67,
Similarly, we can express In(1 — 67;) as
* 1 2 1 0 * 1 A * \2
].Il(]. - 01]) = ln(l - 81]) + —,\—(01] — 01]) (91] 91]) 5 (35)

(1 =0y;)

where 3,; is a value between 1 — élj and 1 — 67;.
Putting (3.4) and (3.5) into (3.3), we have

) 1, .
Ty, = —ZZ[mU_nlg {0 (9* 911’)“7(911’—0”)2}

15 le

s { (B, = 85,) — 5 (B0 — 07,)°)]-

(l - 91]) 2ﬁ1]

Since 01; = (my; — n1;)/my;, the linear terms are canceled. That is,
(ma; — nlj)(ai}' - élj)/élj + nlj(élj - GTj)/(l - élj)
= my(05; = b1j) + (0 — 07;) = 0.

Therefore, the LRT statistic becomes

k=1
* i My — N1y | Ny
Ty, = Z [(Hlj - Hlj)2< Ja2_ -+ E]—Zi)} (36)
5=1 15 1;
Let Tl(g) = (07, — 01;)? (3%_—7111 + %’-) j=1,2,....k —1. Using 6y; = (my; —
1z 13
nij)/mij, we can rewrite Tl(%) as
. Nby 16y
7@ _ 0*,_9.2Tﬁ R A A 3
12 = n( 1j 15) (711 >(af] + ﬂ%] ) (3.7)



Testing for Failure Rate Ordering

Now, we introduce a new random variable, f’g), given by
2 Fi(j - 1)

T3 nl[ (614175) 1]] 01;(1 = 6y5)’

(3.8)
where P(-]y;) is the least square projection operator onto j; = {r € R' : z <
05;}. Since myj/ny — Fi(j — 1), aq; — 8y, and By; — 1 — 6y, almost surely

(7)

under H, , it follows from Slutsky’s theorem that Tlg and ﬁ?} have the same

asymptotic distribution under Hj.

Let ;m = (p11.p12,--.,p1x)" where p;; = Pr[X; = j]. The unrestricted
MLE of p is pp = (P11, P12, .-, Px) Where py; = nyj/ny, j = 1,2,...,k. By
multivariate central limit theorem, \/ni(p — p1) converges weakly to a multi-

variate normal random vector which has mean vector () and covariance matrix
D}n — mp, with D},J = diag{pi1,p12---,p1x}- Recall that 8;;, = F\()/Fi(j —
1),7=1,2,...,k — 1. Applying the multivariate §-method, we can show that

\ /nl(éi — §;) converges in distribution to a random vector Vwhich has a mul-

tivariate normal distribution N,_,(0, ¥) where the (¢, j)th element of ¥ is

pu(l = pu), . i=j=1
o =4 (1 =i p)/(L =5 pu)?, 2<i=7<k-1.
0, tF

Therefore, \/n_l(élj —64,), 7 =1,2,...,k — 1, are asymptotically independent
and normally distributed with mean 0. By converting p;;’s into 6y;’s, the
variance of the jth variable is expressed as Var(V}) = 61;(1 — 6y;)/ [zt e, =
01;,(1—601;)/Fi(j—1), j=1,2,...,k—1. Since ﬁg) is a function of f,; only, it
follows that Tl(zj), 7 =1,2,...,k—1, are also asymptotically independent. The
following lemma will be used to find the asymptotic least favorable distribution
of Ty;. We should note that the test based upon the critical value from the
stochastically largest distribution of T}, in H; is the least favorable in the sense

that it has the smallest power.

35
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Lemma 3.1. Let Q = {91 ERFY 0, <0y, j=1,2,... k- 1} where

0;'s are known. Then, we have for z > 0

~@2$pn£i-r?w Py [Tl(g) > CL] = %Pr[xf > r] (3.9)

This supremum is achieved when 6;; = 6,;.

Proof. First note that Tl(.ﬁ) and ﬂfj have the same asymptotic distribu-
tion. Suppose 01; < 0;;. Since élj converges to f;; almost surely, élj < Oy,
eventually as n; — oo. Thus, for sufficiently large n; , P(é1j|]j) = élj and
ﬁg) = 0. And so, n}gnoo Py [ﬁQ > :E] = 0 for 2 > 0. Now, suppose 0;; = 0,;.

Defining j, = {z € R' : z < 0}, we can express ﬁ]} as

o . A 2 Fi(j—-1)
= ml{POub) - 00} - 0 - 0,) =
7 7
. I 2 Fl(] - 1)
= ny [P(elj - 01j|]o) - (01]' - 91-7)] m

_ V(b5 — 63)) 3 V(s — 6y) 2
- [P(\/elj(l —01;)/Fa(j - 1)‘10) VO (1 = 01,)/ Fa(j — 1)}
Lo [P(Z130) - 2]" where Z ~ N(0,1).

Therefore, for £ > 0

lim Pr[f’g) > m] = Pr[{P(ZUO) — Z}2 > x}]

n]—00

= Pr[Z?> 2,7 >0

1
= 3 Pr[xf > .’E]
This completes the proof.

The following theorem provides the asymptotic least favorable distribution
for the LRT statistic which is a chi-bar-square distribution with binomial level

probabilities.
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Theorem 3.1. Let Q= {6 € R*1:0;; <0y, j=1,2,...,k—1} where

6,,’s are known. Then, for z > 0, we have

k
k—1\ /1%
suplim Py [T12 > z| = - Prixi_, >z 3.10
HED mmo [T > <] ;(1—1>(2) -2 2 (3.10)
and the supremum occurs when 0;; = 6,;, 7 =1,2,..., k- 1.

Proof. From Lemma 3.1, each Tl(zj) becomes stochastically the largest in
asymptotic sense when 6; = 6;;. Since Ty, = ;‘;11 Tl(é) , 119 1s stochastically
maximized when §; € {)y. Furthermore, Lemma 3.1 implies that lim Pp cq, Tl(é)

ny—oo ~
= 0| = ] because Tl(g) > 0. Hence, the asymptotic moment generating function

of Tl(g) under 2, is
1 1 _1 .
bi(t) = 5+ 5(1-207%, j=12... k-1

Since Tl(zj),j =1,2,...,k — 1 are asymptotically independent, the asymptotic

moment generating function of 7T}, is expressed as

B(t) = [5+5(1—20)75
N :(k71><§)'°‘1( 2t)75 01
[T

The proof is completed.
3.2 Two-sample problem.

We assume in this case that F} and F, are both unknown, and consider

the problem of testing Hy : F; < F, against Hy, — H; where H, imposes
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no restriction on Fi’s. Under the same reparameterization as in the previous

section, the likelihood function is given by

0) = lj[H 677" (1 = 035)™). (3.11)

We can express the hypotheses in terms of 6;;’s as-follows:

{Hl: 01j§02j7 ]:172~7k_1 (312)

H, : No restriction on 8

The unrestricted and restricted maximum likelihood estimates of 0;; are given
in (2.11) and (2.12) respectively. Based upon these estimates, the LRT statistic

1s expressed as

k-1 2
T12 = -2 Z Z [(Tni]‘—nij)(ln 9;}-—111 éij)—%—nij{ln(l—ij)—ln(l——éij)}] . (313)
=11

=1 :=1

Expanding In 8}, and In(1 — 6};) about BA,-j and 1 — éij yields

k-1 2
- o My, — Ny, g,
1=11= 17 17
where «;; and f;; are the values between ¢;; and éij and 1 — 9:-;- and 1 — éi]-

respectively.

Let ng) denote the j-th summation term in T},. Then, we can rewrite Tl(é)

as

= gm [(9}3‘ - éij)2(%) (% + ! *;ij)]. (3.14)

Define v; = lim —-(> 0),z = 1,2 and let j = {;t e R? .z, < :cz}. When

n1~+00 14 ,
9, € 3, we can show by Slutsky’s theorem that Tlé) has the same asymptotic
distribution as

2 - » 12y Fi(G —1)
YidiJ
¢ = d>om [Py] (8l2): — 91;‘] —**—0“(1(_ 7)’ (3.15)
=1 17 1)
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where P, (QAJ|]), 1s the ¢th element of the closest point of ; to Q}- with weight

vector w;. Notice that the ¢th element of w; is w;; = v; i;i f,, = 'ylFl(] —1).
The next lemma provides the stochastically largest one among the asymptotic

distributions of Tl(zj) over the parameter set from the null hypothesis.

Lemma 3.2. Let @={0:0,; <f,j=1,2,.. . k—1}. Then, for z > 0,
we have .
sup lim P [T > r] =3 Pr [Xf > 1:] (3.16)

e} n—oo

The supremum is achieved when 6;; = 0,;.

Proof. Suppose 6,; < 0,;. Since élj and égj converge almost surely to 6y;

and 0;; respectively, élj becomes strictly smaller than ézj eventually as p — oo.

This implies that P,, (é,|]) = QAJ eventually. Hence, Tl(é) = 0 almost surely as

p — oo. Suppose that 8;; = 6,;. Let V;; = Yrlbu6y) A we discussed

0i;(1-6;5)
in the paragraph before Lemma 3.1, it follows that V; = (V;;, V4;) L, U =
(Usj,Us;) where U,] are independent and normally distributed with E[U;;] = 0
and Var[U;] = ’YF(J 75- Thus, T12 SN SE 1[ij(gl_]) Uij]zwij as . — oo.
Note that P, (U]y) is equivalent to the isotonic regression of U with weight
vector w; as we discussed in Section 2. Applying the corollary of Theorem
2.3.1 in Robertson et al(1988) yields

hm Pg[ ] szp [,2:w) Pr[x2 ;> :E] for z > 0. (3.17)

=1
where p(j,2 : w;) is the probability that the elements of the isotonic regression
have exactly j distinct values. The level probabilities, p(j, N : w), are generally
unknown. However, it was shown in Section 2.4 of Robertson et al(1988) that
p(1,2:w;) = 3,1 = 1,2 regardless of weight vector w;. Thus, the limiting tail
probability in (3.17) becomes

lim P [Tl(é) > a:] = %Pr[xrf > m] for x > 0. (3.18)

71,-—?

361
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The right hand side of (3.18) is positive and does not depend upon parameter
6. Therefore, the limiting distribution of Tf;) becomes stochastically largest

When 91] = 92]

This lemma has a key role in finding out the asymptotic least favorable
distribution of T3 in the null hypothesis H;. Let 2, = {0:6,;, =0y, j =
1,2,...,k—1}. The following theorem claims that any parameter in 2, is the
least favorable for the asymptotic of Ty;. Surprisingly, the asymptotic least
favorable distributions of the LRT statistics are the same in both one and

two-sample problems.

Theorem 3.2. Let Q= {0:6,; <,;, j=1,2,...,k—1}. Then, for any

z > 0, we have

k ~ -1
sup lim Py [T12 > x] =Y (k 1) (-l-)k Pr[xi_l > :v] (3.19)

e n—oo =1

and this supremum occurs when 8 € ..

Proof. Suppose 8 € Q,. Then, 6;; = 0,;,7 =1,2,...,k—1. From Lemma
3.2, each Tl(g) has the asymptotic distribution given in (3.18) which is stochas-
tically largest under the null hypothesis. By convoluting those distributions
as we did in the proof of Theorem 3.1, we get the least favorable distribution

provided in the theorem.

4. EXAMPLE

We apply in this section our testing method to the ‘oropharynx’ data which
are grouped into seven intervals in Dykstra et al(1991). The patients are classi-
fied into four populations according to the amount of lymph node deterioration
at the beginning of the study. However, we will consider the first two popu-
lations as shown in Table 4.1. Population 0 has no evidence of lymph node

metastases and Population 1 is confronted with tumors. Since our inference
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does not allow censoring, censored observations are dropped from the original
data set. Thus, in this example, we are interested in testing whether or not
there is failure rate ordering (Fy > Fi) between these uncensored populations.
Suppose that complete observations from both of the samples occur on a
subset of times Sy < Sy < -+ < Si(S, = 0,541 = o). We will use the

following notations:

number of complete observations from the :-th population at 5;
k

'I‘:j

ng; =
m; = n;» = number of observations from the z-th population

surviving just prior to S;.

Table 4.1. Number of Survivals and Deaths for Grouped Data

Pop 0 Pop 1

Group Interval m n m n
I 0-160 29 3 19 2

11 161-260 26 5 17 2

11 261-360 21 5 15 6

v 361-540 16 9 9 2

A% 541-700 7 4 7 4

VI 701-900 3 2 3 1
VII above 900 1 1 2 2

Table 4.2. Maximum Likelihood Estimates of 6:;’s

|1 2 3 4 5 6
0 0.8966 0.8077 0.7619 0.4375 0.4286 0.3333
(0.8958) (0.8077) (0.6944) (0.4375) (0.4286) (0.3333)
1 0.8947 0.8824 0.6000 0.7778 0.4286 0.6667
(0.8958) (0.8871) (0.6944) (0.7778) (0.4286) (0.6667)
Note : 1) Restricted MLE’s are given in ( ).

2) Ty = 1.073 (p-value = 0.645).

For this grouped data, the restricted and unrestricted MLE’s are easily ob-

tained by the reparameterization discussed in Section 2. These estimates are
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given in Table 4.2. The p-value of the LRT statistic for failure rate ordering
is 0.645 as given below Table 4.2. This large p-value seems somewhat surpris-
ing because two violations in ordering are found between the elements of the
unrestricted MLE of §;. However, those violations do not result in large value
of test statistic because the reversals are coming up with small discrepancy.
This fact will be the main reason for not showing clear evidence for rejecting

failure rate ordering.
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