• Title/Summary/Keyword: Lignocellulosic wastes

Search Result 14, Processing Time 0.018 seconds

The Production of Alcohol from Municipal Waste(I) -The Changes of Components of the Pretreated Lignocellulosic Biomass- (도시 폐기물로부터 알콜생산(I) - 전처리된 lignocellulosic biomass의 조성분 변화 -)

  • Lim, Bu-Kug;Yang, Jae-Kyung;Jang, Jun-Pok;Lee, Jong-Yoon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.7-12
    • /
    • 1994
  • In recent years, the municipal wastes recognized resources. This study was performed to survey the changes of main components of the pretreated(chemical, physical) lignocellulosic biomass. The result can be summerized as follows; In pulp fiber composition, newsprint and corrugating container were mainly consist of softwood fiber(tracheid). But computer print out and magazine had a large amount of hardwood fiber(wood fiber). And, carbohydrate content in the various lignocellulosic biomass increases as the following orders : Magazine < Newsprint < Corrugating container < Computer print out. In the chemical pretreatments for the delignification, sodium hypochlorite pretreatment was more effective than sodium hydroxide. By washing, ash content of lignocellulosic biomass was decreased. Physical pretreatments were less effective than chemical pretreatment for the delignification. On the other hand, in physical pretreatments, ash content of lignocellulosic biomass was the same tendency as in the chemical pretreatments.

  • PDF

Bioethanol Production Using Lignocellulosic Biomass - review Part I. Pretreatments of biomass for generating ethanol

  • Sheikh, Mominul Islam;Kim, Chul-Hwan;Yesmin, Shabina;Lee, Ji-Yong;Kim, Gyeong-Chul;Ahn, Byeong-Il;Kim, Sung-Ho;Park, Hyeon-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.5
    • /
    • pp.1-14
    • /
    • 2010
  • Bio-ethanol is a promising alternative energy source for reducing both consumption of crude oil and environmental pollution from renewable resources like lignocellulosic biomass such as wood, forest residuals, agricultural leftovers and urban wastes. Based on current technologies, the cost of ethanol production from lignocellulosic materials is relatively high, and the main challenges are the low yield and high cost of the hydrolysis process. Development of more efficient pretreatment technology (physical, chemical, physico-chemical, and biological pretreatment), integration of several microbiological conversions into fewer reactors, and increasing ethanol production capacity may decrease specific investment for ethanol producing plants. The purpose of pretreatment of lignocellulosic material is to improve the accessible surface area of cellulose for hydrolytic enzymes and enhance the conversion of cellulose to glucose and finally high yield ethanol production which is economic and environmental friendly.

Assessment of organic matter biodegradation and physico-chemical parameters variation during co-composting of lignocellulosic wastes with Trametes trogii inoculation

  • Fersi, Mariem;Mbarki, Khadija;Gargouri, Kamel;Mechichi, Tahar;Hachicha, Ridha
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.670-679
    • /
    • 2019
  • Lignin complexity molecule makes its biodegradation difficult during lignocellulosic wastes composting. So, the improvement of its biodegradation has usually been considered as an objective. This study aimed to determine the impact of Trametes trogii inoculation on organic matter and particularly on lignin and cellulose during green wastes co-composting with olive mill waste water sludge and coffee grounds. Three types of heaps (H1, H2 and H3) were investigated during 180 d. H3 and H2 were inoculated at the beginning of the process (t0) and 120 d later (t120), respectively while H1 was the control. Results showed the absence of pH stabilization in H3 during the first month. Also, in this period we observed a faster degradation of some easily available organic matter in H3 than in the other heaps. After 120 d, a better cellulose decomposition (25.28%) was noticed in H3 than in H1 and H2 (16%). Inoculation during the second fermentation phase induced supplementary lignin degradation in H2 with a percentage of 35% against 23 and 26% for H1 and H3, respectively. For all the runs, a Fourier Transform Infrared analysis showed aliphatic groups' decrease, OH groups' increase and lignin structural modification.

Bioethanol Production Using Lignocellulosic Biomass-review Part 2. Saccharification and fermentation of biomass for generating ethanol

  • Sheikh, Mominul Islam;Kim, Chul-Hwan;Yesmin, Shabina;Lee, Ji-Yong;Kim, Gyeong-Chul;Ahn, Byeong-Il;Kim, Sung-Ho;Park, Hyeon-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.5
    • /
    • pp.15-23
    • /
    • 2010
  • Bio-ethanol is the most potential next generation automotive fuel for reducing both consumption of crude oil and environmental pollution from renewable resources such as wood, forest residuals, agricultural leftovers and urban wastes. Lignocellulosic based materials can be broken down into individual sugars. Therefore, saccharification is one of the important steps for producing sugars, such as 6-C glucose, galactose, mannose and 5-C xylose, mannose and rhamnose. These sugars can be further broken down and fermented into ethanol. The main objective of this research is to study the feasibility and optimize saccharification and fermentation process for the conversion of lignocellulosic biomass to low cost bioethanol.

Production of Cellulase from Lignocellulosic Waste. (리그노셀룰로스계 폐기물을 이용한 Cellulase의 생산)

  • 강성우;이진석;김승욱
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.1
    • /
    • pp.98-102
    • /
    • 2002
  • Lignocellulosic wastes available in abundance can be excellent substrates for the production of cellulase. Different types of substrates and various pretreatments were used to improve the production of cellulase. The steam-exploded wood chip gave the highest activities of FPase (0.84 IU/mL) and CMCase (6.5 IU/mL) in the shake-flask culture. In 30 L bioreactor the steam-exploded wood chip and residue after saccharification gave the FPase activity (0.72 IU/mL) and the CMCase activity (6.3 IU/mL), respectively, similar those obtained in lactose.

Nitrogen Source Investigation for Economical Production of Cellulolytic Enzymes

  • Li, Hong-Xian;Kim, Gi-Wan;Lee, Young-Bok;Kim, Seong-Jun
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.250-255
    • /
    • 2005
  • Trichoderma inhamatum KSJ1, a filamentous fungus, isolated from rotten wood showed high ability to hydrolysis of cellulosic materials. Enzyme productivity by strain KSJ1 was high in the cultivation using carbon sources such as cellulosic materials and lignocellulosic wastes as rice straw and paper waste. In previous study peptone was one of optimum organic nitrogen sources in producing cellulases for saccharification of food wastes. However, it was too expensive using peptone as organic nitrogen source, so, in this study, soybean and yeast were applicated to substitute peptone. Yeast showed producing high enzyme activity, so it was estimated that yeast is available in producing cellulase using Trichoderma inhamatum KSJ1 at industrial Production.

  • PDF

Effect of Monosaccharides Extracted by Saturated Portland Cement Solution on the Setting of the Lignocellulosic-Cement Composited (포화(飽和)세멘트 수용액(水溶液)에 의한 추출단당류(抽出單糖類)가 목질(木質)세멘트 복합체(複合體)의 경화(硬化)에 미치는 영향(影響))

  • Choi, Don-Ha;Shin, Dong-So;Ahn, Won-Yung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.25-34
    • /
    • 1984
  • This experiment was carried out to investigate the effects of monosaccharides extracted by saturated portland cement solution on the cement setting in comparision with the inhibitory index (I) of each lignocellulosic-cement system. The wood species which have been widely reforested in Korea, Populus alba-grandulosa, Larix leptolepis, Abies holophylla, Pinus koraiensis, Pinus rigida, Pinus densiflora and agricultural wastes of rice husk and rice stalk were used at this study. The wood meal, 0.50g on dry weight basis, through 0.83 mm(20 mesh) and retained on 0.35mm (40 mesh) screen was extracted by 25 ml saturated portland cement solution and the pH of saturated portland cement solution Was 12.7. To eliminate cation exsisting in the extracted solution, the cation exchange column was used (Fig. 4). Afterwards the extracted monosaccharides were reduced into alditols with sodium borohydride and analyzed by the gas-liquid chromatography for xylan, mannan, arabinan, galactan, gluean. The heat of cement hydration for lignocellulosic-cement system was measured in Dewar flask (Fig. 2). And then the inhibitory indices were calculated from maximum hydration temperature, time and maximum slops of hydration curve of ligno cellulosic-cement systems. The results obtained were as follows; (1) The inhibitory index of pines-Pinus rigida (I=29.33) and Pinus densiflora (I=35.76), were lower than that of poplar-Populus alba-glandulosa (I=41.48), and the index of Larix ieptoiepis (I=73.00) was the highest among eight lignocellulosic-cement systems, and accordingly both Pinus rigida and Pinus des(flora were seemed to be good wood species for wood-cement composite manufacture. (2) In case of Pinus rigida, the inhibitory index was 29.33 and the ratio of the hexoses to the pemoses was 6.04 and in case of Larix leptolepis, the index and the ratio were 73.00 and 35.19, respectively. Therefore the inhibitory index increased with increasing the ratios of the hexoses to the pentoses. (3) The richer amount of xylose and mannose in species caused decreasing the slops of the hydration curve of the lignocellulosic-cement system, prohahly due to the chemical adsorption of the acetyl groups in the hemicellulose on the surface of cement grains. (4) The amoun of xylose and mannose were significant to the inhibitory index of each lignocellulosic-cement system but any specific relation between the amount of glucose and inhibitory index was not found.

  • PDF

Alkaline Peroxide Pretreatment of Waste Lignocellulosic Sawdust for Total Reducing Sugars

  • Satish Kumar Singh;Sweety Verma;Ishan Gulati;Suman Gahlyan;Ankur Gaur;Sanjeev Maken
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.412-418
    • /
    • 2023
  • The surge in the oil prices, increasing global population, climate change, and waste management problems are the major issues which have led to the development of biofuels from lignocellulosic wastes. Cellulosic or second generation (2G) bioethanol is produced from lignocellulosic biomass via pretreatment, hydrolysis, and fermentation. Pretreatment of lignocellulose is of considerable interest due to its influence on the technical, economic and environmental sustainability of cellulosic ethanol production. In this study, furniture waste sawdust was subjected to alkaline peroxide (H2O2) for the production of reducing sugars. Sawdust was pretreated at different concentrations from 1-3% H2O2 (v/v) loadings at a pH of 11.5 for a residence time of 15-240 min at 50, 75 and 90 ℃. Optimum pretreatment conditions, such as time of reaction, operating temperature, and concentration of H2O2, were varied and evaluated on the basis of the amount of total reducing sugars produced. It was found that the changes in the amount of lignin directly affected the yield of reducing sugars. A maximum of 50% reduction in the lignin composition was obtained, which yielded a maximum of 75.3% total reducing sugars yield and 3.76 g/L of glucose. At optimum pretreatment conditions of 2% H2O2 loading at 75 ℃ for 150 min, 3.46 g/L glucose concentration with a 69.26% total reducing sugars yield was obtained after 48 hr. of the hydrolysis process. Pretreatment resulted in lowering of crystallinity and distortion of the sawdust after the pretreatment, which was further confirmed by XRD and SEM results.

Optimization of soaking in aqueous ammonia pretreatment of canola residues for sugar production (당 생산을 위한 카놀라 부산물의 암모니아 침지 전처리 공정의 최적화)

  • Yoo, Hah-Young;Kim, Sung Bong;Lee, Sang Jun;Lee, Ja Hyun;Suh, Young Joon;Kim, Seung Wook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.114.1-114.1
    • /
    • 2011
  • Bioenergy production from lignocellulosic biomass and agriculture wastes have been attracted because of its sustainable and non-edible source. Especially, canola is considered as one of the best feedstock for renewable fuel production. Oil extracted canola and its agriculture residues are reuseable for bioethanol production. However, a pretreatment step is required before enzymatic hydrolysis to disrupt recalcitrant lignocellulosic matrix. To increase the sugar conversion, more efficient pretreatment process was necessary for removal of saccharification barriers such as lignin. Alkaline pretreatment makes the lignocellulose swollen through solvation and induces more porous structure for enzyme access. In our previous work, aqueous ammonia (1~20%) was utilized for alkaline reagent to increase the crystallinity of canola residues pretreatment. In this study, significant factors for efficient soaking in aqueous ammonia pretreatment on canola residues was optimized by using the response surface method (RSM). Based on the fundamental experiments, the real values of factors at the center (0) were determined as follows; $70^{\circ}C$ of temperature, 17.5% of ammonia concentration and 18 h of reaction time in the experiment design using central composition design (CCD). A statistical model predicted that the highest removal yield of lignin was 54% at the following optimized reaction conditions: $72.68^{\circ}C$ of temperature, 18.30% of ammonia concentration and 18.30 h of reaction time. Finally, maximum theoretical yields of soaking in aqueous ammonia pretreatment were 42.23% of glucose and 22.68% of xylose.

  • PDF

Trends in Agricultural Waste Utilizatili-zation

  • Han, Youn-Woo
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1979.04a
    • /
    • pp.113.1-113
    • /
    • 1979
  • Each year, vast amount of agricultural crop residues are produced (about 60 percent of the total crop production), which have not been effectively utilized because they are bulky and lignocellulosic, thus having little fuel energy per unit volume. Using treated plant residues as animal feeds could result in an ultimate saving of fossil fuel energy and a more effective utilizat ion of products created by the photosynthetic process. Feeding the residues to animals would decrease the pollution potential, but these residues are difficult for even a ruminant animal to digest. If cellulosic wastes produced from cereal grain straw and wood could be digested, land now used for producing forage add grain cnuld be shifted to food crops for humans. During the past decade, considerable efforts were made to utilize crop residues. These utilization methods can be broadly grouped into for categories: (1) direct uses, (2) mechanical conversions, (3) chemical conversions and (4) biological conversions. Agricultural crop residues consist mainly of cellulose, hemicellulose, lignin, pectin, andother plant carbohydrates. The nature of the constituents of these residues can be best utilized as one of the five FS: Fuel, Fiber, Fertilizer, Feed and Food. Many processes have teen proposed and some are in industrial production stage. However, economics of the process depend on the location where availability of other competitive products are different.

  • PDF