• Title/Summary/Keyword: Lightweight cipher

Search Result 101, Processing Time 0.022 seconds

High Speed Implementation of LEA on ARMv8 (ARMv8 상에서 LEA 암호화 고속 구현)

  • Seo, Hwa-jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1929-1934
    • /
    • 2017
  • Lightweight block cipher (Lightweight Encryption Algorithm, LEA), is the most promising block cipher algorithm due to its efficient implementation feature and high security level. The LEA block cipher is widely used in real-field applications and there are many efforts to enhance the performance of LEA in terms of execution timing to achieve the high availability under any circumstances. In this paper, we enhance the performance of LEA block cipher, particularly on ARMv8 processors. The LEA implementation is optimized by using new SIMD instructions namely NEON engine and 24 LEA encryption operations are simultaneously performed in parallel way. In order to reduce the number of memory access, we utilized the all NEON registers to retain the intermediate results. Finally, we evaluated the performance of the LEA implementation, and the proposed implementations on Apple A7 and Apple A9 achieved the 2.4 cycles/byte and 2.2 cycles/byte, respectively.

Improved Related-key Attack against Recent Lightweight Block Cipher PRINCE (최신 경량 블록 암호 PRINCE에 대한 향상된 연관키 공격)

  • Ju, Wangho;An, Hyunjung;Yi, Okyeon;Kang, Ju-Sung;Kim, Jongsung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.3
    • /
    • pp.445-451
    • /
    • 2014
  • The related-key attack is regarded as one of the important cryptanalytic tools for the security evaluation of block ciphers. This is due to the fact that this attack can be effectively applied to schemes like block-cipher based hash functions whose block-cipher keys can be controlled as their messages. In this paper, we improve the related-key attack on lightweight block cipher PRINCE proposed in FSE 2013. Our improved related-key attack on PRINCE reduces data complexity from $2^{33}$ [4] to 2.

A Design of Crypto-processor for Lightweight Block Cipher LEA (경량 블록암호 LEA용 암호/복호 프로세서 설계)

  • Sung, Mi-ji;Shin, Kyung-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.401-403
    • /
    • 2015
  • This paper describes an efficient hardware design of 128-bit block cipher algorithm LEA(lightweight encryption algorithm). In order to achieve area-efficient and low-power implementation, round block and key scheduler block are optimized to share hardware resources for encryption and decryption. The key scheduler register is modified to reduce clock cycles required for key scheduling, which results in improved encryption/decryption performance. FPGA synthesis results of the LEA processor show that it has 2,364 slices, and the estimated performance for the master key of 128/192/256-bit at 113 MHz clock frequency is about 181/162/109 Mbps, respectively.

  • PDF

Implementation and performance evaluation of PIPO lightweight block ciphers on the web (웹상에서의 PIPO 경량 블록암호 구현 및 성능 평가)

  • Lim, Se-Jin;Kim, Won-Woong;Kang, Yea-Jun;Seo, Hwa-Jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.731-742
    • /
    • 2022
  • PIPO is the latest domestic lightweight block cipher announced in ICISC'20, which is characterized by being lightweight to facilitate implementation on IoT with limited resources. In this paper, PIPO 64/128-bit and 64/256-bit were implemented using web-based languages such as Javascript and WebAsembly. Two methods of performance evaluation were conducted by implementing bitsice and TLU, and the performance was compared by implementing Looped written using for statements and Unrolled written for statements. It performs performance evaluations in various web browsers such as Google Chrome, Mozilla Firefox, Opera, and Microsoft Edge, as well as OS-specific environments such as Windows, Linux, Mac, iOS, and Android. In addition, a performance comparison was performed with PIPO implemented in C language. This can be used as an indicator for applying PIPO block cipher on the web.

A Hardware Design of Ultra-Lightweight Block Cipher Algorithm PRESENT for IoT Applications (IoT 응용을 위한 초경량 블록 암호 알고리듬 PRESENT의 하드웨어 설계)

  • Cho, Wook-Lae;Kim, Ki-Bbeum;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1296-1302
    • /
    • 2016
  • A hardware implementation of ultra-lightweight block cipher algorithm PRESENT that was specified as a block cipher standard for lightweight cryptography ISO/IEC 29192-2 is described in this paper. Two types of crypto-core that support master key size of 80-bit are designed, one is for encryption-only function, and the other is for encryption and decryption functions. The designed PR80 crypto-cores implement the basic cipher mode of operation ECB (electronic code book), and it can process consecutive blocks of plaintext/ciphertext without reloading master key. The PR80 crypto-cores were designed in soft IP with Verilog HDL, and they were verified using Virtex5 FPGA device. The synthesis results using $0.18{\mu}m$ CMOS cell library show that the encryption-only core has 2,990 GE and the encryption/decryption core has 3,687 GE, so they are very suitable for IoT security applications requiring small gate count. The estimated maximum clock frequency is 500 MHz for the encryption-only core and 444 MHz for the encryption/decryption core.

Real Time Related Key Attack on Hummingbird-2

  • Zhang, Kai;Ding, Lin;Li, Junzhi;Guan, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.8
    • /
    • pp.1946-1963
    • /
    • 2012
  • Hummingbird is a lightweight encryption and message authentication primitive published in RISC'09 and WLC'10. In FSE'11, Markku-Juhani O.Saarinen presented a differential divide-and-conquer method which has complexity upper bounded by $2^{64}$ operations and requires processing of few megabytes of chosen messages under two related nonces (IVs). The improved version, Hummingbird-2, was presented in RFIDSec 2011. Based on the idea of differential collision, this paper discovers some weaknesses of the round function WD16. Combining with the simple key loading algorithm, a related-key chosen-IV attack which can recover the full secret key is proposed. Under 15 pairs of related keys, the 128 bit initial key can be recovered, requiring $2^{27}$ chosen IV and the computational complexity is $O(2^{27})$. In average, the attack needs several minutes to recover the full 128-bit secret key on a PC. The experimental result corroborates our attack. The result shows that the Hummingbird-2 cipher can't resist related key attack.

Masking-Based Block Cipher LEA Resistant to Side Channel Attacks (부채널 공격에 대응하는 마스킹 기반의 블록 암호 LEA)

  • Park, Eunsoo;Oh, Soohyun;Ha, Jaecheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.5
    • /
    • pp.1023-1032
    • /
    • 2017
  • When a cryptographic device such as smart card performs an encryption for a plain text, an attacker can extract the secret key in it using side channel information. Especially, many researches found some weaknesses for side channel attack on the lightweight block cipher LEA designed to apply in IoT environments. In this paper, we survey several masking countermeasures to defeat the side channel attack and propose a novel masking conversion method. Even though the proposed Arithmetic-to-Boolean masking conversion method requires storage memory of 256 bytes, it can improve the LEA encryption speed up to 17 percentage compared to the case adopted the previous masking method.

A Hardware Implementation of lightweight block cipher TWINE (경량 블록암호 TWINE의 하드웨어 구현)

  • Choe, Jun-Yeong;Eom, Hong-Jun;Jang, Hyun-Soo;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.339-340
    • /
    • 2018
  • 본 논문에서는 경량 블록암호 알고리듬 TWINE의 하드웨어 설계에 대해 기술한다. TWINE은 80-비트 또는 128-비트의 마스터키를 사용하여 64-비트의 평문(암호문)을 암호(복호)하여 64-비트의 암호문(평문)을 만드는 대칭키 블록암호이며, s-box와 XOR만 사용하므로 경량 하드웨어 구현에 적합하다는 특징을 갖는다. 암호화 연산과 복호화 연산의 하드웨어 공유를 통해 게이트 수가 최소화 되도록 구현하였으며, 설계된 TWINE 크립토 코어는 RTL 시뮬레이션을 통해 기능을 검증하였다.

  • PDF

A Hardware Implementation of Ultra-Lightweight Block Cipher PRESENT Supporting Four Modes of Operation (4가지 운영모드를 지원하는 초경량 블록암호 PRESENT의 하드웨어 구현)

  • Kim, Ki-Bbeum;Cho, Wook-Lae;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.151-153
    • /
    • 2016
  • 80/128-비트 마스터키 길이와 ECB, CBC, OFB, CTR의 4가지 운영모드를 지원하는 PRESENT 경량 블록암호 프로세서를 설계하고, Virtex5 FPGA에 구현하여 정상 동작함을 확인하였다. PRESENT 크립토 프로세서를 $0.18{\mu}m$ 공정의 CMOS 셀 라이브러리로 합성한 결과 8,237 GE로 구현되었으며, 최대 434 MHz 클록으로 동작하여 868 Mbps의 성능을 갖는 것으로 예측되었다.

  • PDF

Low area field-programmable gate array implementation of PRESENT image encryption with key rotation and substitution

  • Parikibandla, Srikanth;Alluri, Sreenivas
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.1113-1129
    • /
    • 2021
  • Lightweight ciphers are increasingly employed in cryptography because of the high demand for secure data transmission in wireless sensor network, embedded devices, and Internet of Things. The PRESENT algorithm as an ultralightweight block cipher provides better solution for secure hardware cryptography with low power consumption and minimum resource. This study generates the key using key rotation and substitution method, which contains key rotation, key switching, and binary-coded decimal-based key generation used in image encryption. The key rotation and substitution-based PRESENT architecture is proposed to increase security level for data stream and randomness in cipher through providing high resistance to attacks. Lookup table is used to design the key scheduling module, thus reducing the area of architecture. Field-programmable gate array (FPGA) performances are evaluated for the proposed and conventional methods. In Virtex 6 device, the proposed key rotation and substitution PRESENT architecture occupied 72 lookup tables, 65 flip flops, and 35 slices which are comparably less to the existing architecture.