Processing math: 100%
  • Title/Summary/Keyword: Lighting Energy

Search Result 685, Processing Time 0.027 seconds

Feedback Circuit of Maximum LED Channel String Voltage Detection Converter for Energy Saving on Multichannel LED Module (Multi Channel LED 조명 Module 구동에서 최대 효율을 위한 최대 Channel 전압 감지회로)

  • Kim, Hyun-Sik;Kim, Ki-Woon;Kim, Gi-Hoon;Kim, Yu-Sin;Song, Sang-Bin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.938-941
    • /
    • 2012
  • LED is divided to multichannel in order not to exceed a certain voltage in aspects of electric standard. However, it's not possible to know in accordance with what channel SMPS controls the constant voltage and current. In order to solve this problem, it needs to detect the maximum LED String voltage which is applied to LED control circuit, and it is possible to minimize the voltage drop when a difference of LED string voltage occurs by each channel if LED is controlled by the maximum LED string voltage detected. In addition, it is also possible to maximize the efficiency of LED if change LED voltage by detecting the maximum voltage. Feasibility of this claim was verified through implementation of the circuit.

Control Efficiency of a Daylight Dimming System for Indirect Lighting in a Small Office (소규모 사무실 공간에서 간접조명에 대한 조광제어 시스템효율)

  • Kim, Soo-Young;Jung, Yong-Ho;Sohn, Jang-Yeul
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.3
    • /
    • pp.33-43
    • /
    • 2006
  • Daylight dimming control system was analyzed for an indirect lighting system in a small office space with a double skin envelope system. Computer simulations were performed for photosensors with three shielding conditions. The photosensors were placed on the center of ceiling, and backwall. Three sky conditions defined by CIE were considered. Overall, control performance was not very excellent for all conditions. Fully-shielded photosensor achieved good control performance for some cases, but partially-shielded and unshielded photosensors failed to achieve target illuminance. The variation in desktop illuminance due to daylight was examined for a variety of daylight conditions. Linear correlation between desktop illuminance and photosensor illuminance was analyzed using ANOVA.

A Study on the Ratio of Luminance and Energy Saving for Lighting of Schoolroom (학교 강의실 조명에 대한 에너지 절약과 균제도에 관한 연구)

  • 최홍규;최병숙;조경남;조계술;김정한;김성수;조의상;정성윤
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.135-143
    • /
    • 2000
  • This parer is the among educational environment, lighting's role is more important since it improves the visual tasks, capability of work, and it help to build both balanced mind and body. Also, since students need spend most of their time inside rather than outside, students need appropriate illuminance everyday. If optimum illuminance and distribution of luminance is properties controlled, people can decrease the fatigue of eyes, and also, people can maximize their efficiency of work. This present studying class chose of two school measured illuminance using the computer simulation improved ratio of luminance and luminance by distribution of lighting improve the economy and energy saving.

  • PDF

A Study on Daylighting Performance of an Inner Court with Reflecting Mirror System (반사거울 방식을 이용한 중정 내 자연채광 성능 분석 연구)

  • Park, Byung-Yoon;Choi, Chang-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.112-121
    • /
    • 2011
  • To lead lighting inside, design solution and mechenical solution can be used.A inner court and atrium are samples for design solution. However, physical and environmental elements for building design are not taken positively into consideration. So low position of the inner court is difficult to reach lighting performance and a urban landscape gets damaged. On this study, selecting a building with a inner court, best design method is suggested to apply reflecting mirror. building direction, building shape and solar position are considered to deside the setting angle for reflecting mirror. Performance for the setting reflecting mirror is verified through various simulation cases, and is got more lighting performance than the present situation on the building inside.

Performance Evaluation of Light-Shelf based on Light Enviorment and Air Conditioner Enviorment (빛환경 및 냉난방환경 기반 광선반 성능평가 연구)

  • Jeon, Gangmin;Lee, Heangwoo;Seo, Janghoo;Kim, Yongseong
    • KIEAE Journal
    • /
    • v.16 no.5
    • /
    • pp.47-55
    • /
    • 2016
  • Purpose: As the energy consumed by buildings increases, there is a growing need for studies and technology development to address this issue. One of the solutions to excessive energy use by buildings is the light-shelf, which is a natural lighting system enabling efficient reduction in light energy, and research in this area has been intensive. However, most of the studies about the light-shelf are limited to the light environment, and thus the application of their findings to an actual environment in the form of a design may be problematic. Therefore, the purpose of the present study is to provide fundamental data for light-shelf design by carrying out a light-shelf performance evaluation on the basis of the light environment and the heating and cooling environment. Method: In the present study, a testbed was established to conduct a light-shelf performance evaluation by measuring the electric power consumption of lighting and heating and cooling devices depending on the existence of a light-shelf and its angle. Result: The findings of the present study are as follows: 1) With respect to the uniformity of the indoor light environment amenity, the optimum angle of a light-shelf was found to be 30 for the summer solstice and the winter solstice. 2) With respect to the reduction of electric power consumption by indoor lighting devices, the optimum light-shelf angle at the summer solstice is 30, at which time electric power consumption may be reduced by 10.2% in comparison with when no light-shelf is applied. However, at the winter solstice, a light-shelf may increase the energy consumption for lighting in comparison with when no light-shelf is applied, and this should be taken into account in the design of a light-shelf. 3) In terms of reducing the electric power consumption of heating and cooling devices, the optimum angle of a light-shelf was found to be 30 for the summer solstice, while a light-shelf is inappropriate for the winter solstice since a light-shelf creates shade and thus increases the heating energy consumption. 4) To summarize the findings above, the optimum angle of a light-shelf is 30 for the summer solstice, but the installation of a light-shelf may in some circumstances increase the energy consumed by lighting devices as well as by heating and cooling devices. Therefore, more studies and technology development may need to be performed to solve the problem of increased energy consumption at the winter solstice.

A Study on Evaluation of LED Lighting Environments for Energy Saving and Work Effectiveness (에너지 저감과 업무 효율성을 위한 LED 조명환경 평가에 대한 연구)

  • Kim, Hyung-Sun;Lim, Jae-Hyun;Lee, Kee-Sun;Kim, Kil-Hee;Jung, Hee-Chang;Kim, Jin Ho
    • Science of Emotion and Sensibility
    • /
    • v.18 no.2
    • /
    • pp.45-54
    • /
    • 2015
  • This study carried out an experiment to identify subject's work effectiveness and energy saving effect using LED light. Towards this end, this study configured nine various lighting environments in order to control PWM (Pulse Width Modulation) and illuminance (lux), which are the characteristics of LED light. The PWM ratio of LED light was set as R:G:B=1:1:1, R:G:B=4:1:5, and R:G:B=8:7:7, respectively, and illuminance (lux) was set as 400 lx, 700 lx, and 1000 lx, respectively. In addition, the indoor environment was set temperature 2024C, humidity 50%-60%, and the amount of clothing 1. This study analyzed work effectiveness and energy consumption in nine lighting environments, each. Error correction was performed for work effectiveness analysis, and cumulative power consumption was measured in each lighting environment for energy consumption analysis. According to experiment results through the lighting environments suggested in this study, accuracy and spent time effectiveness were good in 700lux and higher than 400lux. For spent time, the best effectiveness was revealed in the suggested PWM ratio, R:G:B=8:7:7. The lowest power consumption on each illuminance (lux) was revealed in the order of R:G:B=8:7:7, RGB=1:1:1, and R:G:B=4:1:5. Therefore, pulse-width modulation effect is proposed in this paper was found to affect the efficiency and energy saving.

Energy Performance Evaluation of Building Micro-grid System Including Micro-turbine in Hospital Buildings (마이크로터빈이 포함된 빌딩마이크로그리드시스템의 병원건물의 에너지성능평가)

  • Kim, Byoung-Soo;Hong, Won-Pyo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.279-283
    • /
    • 2009
  • Distributed generation(DG) of combined cooling, heat. and power(CCHP)has been gaining momentum in recent year as efficient, secure alternative for meeting increasing energy demands. This paper presents the energy performance of microturbine CCHP system equipped with an absorption chiller by modelling it in hospital building. The orders of study were as following. 1)The list and schedule of energy consumption equipment in hospital were examined such as heating and cooling machine, light etc. 2) Annual report of energy usage and monitoring data were examined as heating, cooling, DHW, lighting, etc. 3) The weather data in 2007 was used for simulation and was arranged by meteorological office data in Daejeon. 4) Reference simulation model was built by comparison of real energy consumption and simulation result by TRNSYS and ESP-r. The energy consumption pattern of building were analyzed by simulation model and energy reduction rate were calculated over the cogeneration. As a result of this study, power generation efficiency of turbine was about 30% after installing micro gas turbine and lighting energy as well as total electricity consumption can be reduced by 40%. If electricity energy and waste heat in turbine are used, 56% of heating energy and 67% of cooling energy can be reduced respectively, and total system efficiency can be increased up to 70%.

  • PDF

Design of Lighting Control Algorithm for Intelligent LED Lighting System (지능형 LED 점등시스템을 위한 점등제어 알고리즘 설계)

  • Hong, Sung-Il;Lin, Chi-Ho
    • Journal of IKEEE
    • /
    • v.16 no.3
    • /
    • pp.274-282
    • /
    • 2012
  • In this paper, we propose the design of lighting control algorithm for intelligent LED lighting system. The proposed lighting control algorithm transmitted to MCU through a data bus the environmental information detected from respectively sensor node. The MCU control software was designed to determine the level maintained to depending on the set control method by comparing the results that calculated the dimming level using a signal value. Also, it was designed to be lighting by cross-performed periodically the rotation and reverse method by created fully symmetrical pattern using the control algorithm to LED lighting device. In this paper, the proposed lighting control algorithm improved the reliability of the data sent by designed the system that can be controlled lighting to stable, and it was maintained the event delivery ratio of 91%. Also, the lighting device was decreased the luminous intensity of 32%, the power consumption of 49%, and heat generation of 32%. As a result, it were could be improved the energy efficiency that the life-cycle of LED has been increased 50%.

The Hybrid Road Lighting Control System Design using Solar-Light Generation (태양광 발전을 이용한 하이브리드 도로조명 점등제어 시스템 설계)

  • Hong, Sung-Il;Lin, Chi-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.1
    • /
    • pp.109-120
    • /
    • 2013
  • In this paper we proposed the design of the hybrid road lighting control system using solar-light generation. The proposed hybrid road lighting control system be power offer through hybrid controller using Solar-Light Generation, and it is designed so that it can control lighting up. To control supply of continuous power when during power shortages. And the gateway be transmit control command using zigbee to road lighting to ensure that automatic lighting control on human sensing. In this case, the gateway is apply the lighting control algorithm that decisions to the status of the system by a pre-set time schedule and be able to operate. In this paper, the proposed efficiency analysis results of a hybrid road lighting control system was consumed power of 129.6W per day, 3.8KW per month, 47.3KW per annual. As a result, it were able to increase the energy efficiency than existing lighting control system by reduce power consumption of 76.2% and the electricity prices of 76.8%.

Recent Progress in Solar Energy Research - A review of Papers Published in the Korean Journal of Solar Energy between 2000 and 2002 - (태양에너지 분야의 최근 연구동향- 2000년2002년 학회지 논문에 대한 종합적 고찰 -)

  • Yoo, Ho-Chun;Jang, Moon-Seok
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.107-119
    • /
    • 2002
  • A review on the papers published in the Korean Journal of Solar Energy between 2000 and 2002 has been done. Focus has been put on current status of research in the aspect of Insolation. Solar Collector and Storage System, Solar Heating and Cooling System, Solar Cell and Lighting System, Active and Passive Solar Building, Heat Transfer in Solar Energy and Natural Energy. The conclusions are as follows. 1) Many studies on Insolation were conducted to optimize the usage of Solar Energy. 2) A review of the recent studies on solar thermal shows that there were many papers on solar collector and storage system. However, studies on the HVAC system using solar energy were relatively insufficient. 3) To produce high efficient solar cell. various experimental and numerical papers were published. However studies on control system, solar cell and lighting were seemed to be insufficient. 4) Studies on using solar energy in passive solar buildings were widely carried out, however, studies based on synthetic analysis of buildings and BIPV were insufficient. 5) Studies on heat transfer were mainly about heat exchanger, performance of heat pipe and multi air conditioner. 6) Studies on energy resources except for solar energy, such as hydraulic power and wind power etc. were very few.