• Title/Summary/Keyword: Light-emitting Diode

Search Result 1,407, Processing Time 0.036 seconds

Study on compensation of thermal stresses in multilayered materials

  • Han, Jin-Woo;Kim, Jong-Yeon;Kim, Byoung-Yong;Han, Jeong-Min;Moon, Hyun-Chan;Park, Kwang-Bum;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.413-413
    • /
    • 2007
  • In recent years, flexible display devices such as liquid crystal display (LCD), organic light emitting diode (OLED), etc. have attracted considerable interest in a wide variety of applications. Polymer substrate is absolutely necessary to realize this kind of flexible display devices. Using the polymer as a substrate, there are lots of advantages including not only mechanical flexibility such as rolling and bending characteristics but also light weights, low cost and so on. In detail, thickness and weights is only one forth and one second of glass substrate, respectively. However, it needs low temperature below $150^{\circ}C$ in the fabrication process comparing to conventional deposition process. The polymer substrate is not thermally stable as much as the glass substrate so that some deformation can be occurred according to variation of temperature. In particular, performance of devices can be easily deteriorated by shrinkage of substrate when heating it. In this paper, pre-annealing and deposition of buffer layer was introduced and studied to solve previously mentioned problems of the shrinkage and followed shear stress.

  • PDF

Luminescence Properties of $Eu^{2+}$-doped $Ca_2Si_5N_8$ Thin Films ($Eu^{2+}$-doped $Ca_2Si_5N_8$ 박막의 광학특성)

  • Jang, Bo-Yun;Pakr, Joo-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.25-27
    • /
    • 2007
  • $Eu^{2+}$-doped $Ca_2Si_5N_8$ was grown on Si(100) substrate using metal-organic deposition (MOD) method and post-annealed at $900^{\circ}C$ in various atmosphere. Luminescence properties of these thin films were investigated with variations of $Eu^{2+}$-doped concentrations and annealing atmosphere. Thin film was formed with clean surface and uniform thickness of about 72 nm. From the measurements of luminescence properties of thin films, film must be post-annealed in nitrogen or mixture of nitrogen and hydrogen atmosphere to emit a sufficient light. For $Ca_{1.5}Eu_{0.5}Si_5N_8$ thin film annealed at $900^{\circ}C$ in nitrogen atmosphere, excitation band from 380 to 420 nm was detected with the maximum intensity at 404 nm and two broad emission bands from 530 to 630 nm were observed. These broad excitation and emission bands must be attributed to the nitrogen incorporations into the films. From the results, $Ca_{2-x}Eu_xSi_5N_8$ thin film has probability for next generation thin film lighting applications such as light emitting diode (LED) or electro-luminescence (EL).

  • PDF

Illuminance Distribution and Photosynthetic Photon Flux Density Characteristics of LED Lighting with Periodic Lattice Arrangements

  • Jeon, Hee-Jae;Ju, Kang-Sig;Joo, Jai-Hwang;Kim, Hyun-Gyun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.1
    • /
    • pp.16-18
    • /
    • 2012
  • LED lighting systems that combine lighting capability, emotional and physiological characteristics are required for lighting source and multifunctional applications. In this work, Simulation studies using optical analysis software packages, Light Tools, are presented. This is done to estimate the uniformity ratio of illuminance and photosynthetic photon flux density (PPFD) of the periodic 2D lattice arrangements, such as square, diamond, two-way bias quadrangular, hexagonal, and Kagome lattices, under the same transmissivity, absorptance and reflectivity. It has been found out that the two-dimensional Kagome lattice arrangement exhibited high uniformity ratio of illuminance and PPFD compared to other lattices. Accordingly, these results can be used to guide a design and improve the lighting environment which in turn would maximize the uniform distributions of illuminance.

Synthesis of Lu3Al5O12:Ce3+ Nano Phosphor by Coprecipitation Method, and Their Optical Properties (공침법을 이용한 Lu3Al5O12:Ce3+ 나노 형광체 합성과 광학적 특성 분석)

  • Kang, Taewook;Kang, Hyeonwoo;Kim, Jongsu;Kim, Gwangchul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.51-56
    • /
    • 2019
  • LuAG:Ce(Lu3Al5O12:Ce3+) nano phosphor were synthesized by applying the coprecipitation method. It is used to increase the color rendering of phosphor ceramic plate for high power LEDs and laser lighting. Internal quantum efficiency and absorption of LuAG:Ce nano phosphor are 51.5 % and 64.4 %, respectively, which is higher than the previously studied nano phosphors. The maximum absorption wavelength of this phosphor is 450 nm blue light, and the emission wavelength is 510 nm. The emission wavelength shifted to longer wavelength when the concentration of Ce increased in the heat treatment of the reducing atmosphere. Thermal quenching of LuAG nano phosphor was 70 % at 200 ℃, it was explained by their significant quenching of all raman scattering modes, implying the restriction of electron-phonon couplings caused by their defects.

A Study on High Power LED Lamp Structures (COB LED 램프 패키징 방열 특성과 신뢰성에 관한 연구)

  • Hong, Dae-Woon;Lee, Song-Jae
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.3
    • /
    • pp.118-122
    • /
    • 2010
  • We fabricated a high power LED lamp structure which utilizes the modified COB concept based on an MCPCB with insulation layer partially removed. In the proposed structure, no insulation layer exists between the LED chip and the metal base. As a result, the heat generated in the chip is easily dissipated through the metal base. In actual measurement as well as in thermal simulation, the fabricated LED lamp structure showed superb thermal properties, compared to the SMD LED lamp attached on an MCPCB or the LED lamp based on conventional COB concept.

A Study on the Development of Sensor-Based Smart Wappen System -Focus on UV Sensor and Gas Sensor-

  • Park, Jinhee;Kim, Jooyong
    • Journal of Fashion Business
    • /
    • v.22 no.6
    • /
    • pp.94-104
    • /
    • 2018
  • The objective of this study was to develop a wearable systems that protect users, based on sensors that are easy to use, from accidents caused by harmful gases in the operator's poor working environment or the risk of ultraviolet rays during outdoor activities. By developing smart wappen with Light Emitting Diode (LED) light alarm function including UV sensor and gas sensor and central processing unit, systems that are applied to daily wear and work clothes to explore the possibility of user-centered, harmful environment monitoring products in real time were proposed. Each sensor was applied to sportswear and work clothes and the wappen system consisted of lightweight and thin form as a whole. Wappen to cover the device had one sheet cover on the front and another cover from the inside to form a sandwich like formation. Wappen was made in the same form as regular clothes that doesn't damage the exterior then a removable wappen system was developed using Velcro and snap methods to enable the separation of device or the exchange of batteries. De-adhesion method can occur in two ways, from the outside and from the inside, so the design is selected depending on the application. This study shows the significance of the development of sensor-based smart clothing, in that it presented a universal model for users.

Optical Imaging Technology for Real-time Tumor Monitoring

  • Shin, Yoo-kyoung;Eom, Joo Beom
    • Medical Lasers
    • /
    • v.10 no.3
    • /
    • pp.123-131
    • /
    • 2021
  • Optical imaging modalities with properties of real-time, non-invasive, in vivo, and high resolution for image-guided surgery have been widely studied. In this review, we introduce two optical imaging systems, that could be the core of image-guided surgery and introduce the system configuration, implementation, and operation methods. First, we introduce the optical coherence tomography (OCT) system implemented by our research group. This system is implemented based on a swept-source, and the system has an axial resolution of 11 ㎛ and a lateral resolution of 22 ㎛. Second, we introduce a fluorescence imaging system. The fluorescence imaging system was implemented based on the absorption and fluorescence wavelength of indocyanine green (ICG), with a light-emitting diode (LED) light source. To confirm the performance of the two imaging systems, human malignant melanoma cells were injected into BALB/c nude mice to create a xenograft model and using this, OCT images of cancer and pathological slide images were compared. In addition, in a mouse model, an intravenous injection of indocyanine green was used with a fluorescence imaging system to detect real-time images moving along blood vessels and to detect sentinel lymph nodes, which could be very important for cancer staging. Finally, polarization-sensitive OCT to find the boundaries of cancer in real-time and real-time image-guided surgery using a developed contrast agent and fluorescence imaging system were introduced.

Object Position Measuring System using Trilateration Method based on Illuminance of LED (LED의 조도를 기반으로 삼각측량법을 사용한 물체 위치 계측 시스템)

  • Sagong, Byung-Il;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.449-455
    • /
    • 2022
  • In this paper, we propose a position measuring system using trilateration based on the illuminance of a light-emitting diode (LED). Three LEDs are located on the ceiling of the virtual space, and each fixed coordinate is inputted to the monitoring program, and Length to the illuminance sensor is drawn through the relational expression of the length and illuminance value from the respective LED. Based on the derived length, the trilateration method is used to find object location information in virtual space. By using the least square equation to minimize the error of the length drawn to trilateration, the error is reduced to the utmost. Unlike the existing indoor positioning system using visible light communication (VLC), the proposed system does not require synchronization between the transmitter and the receiver, so the system can be configured simply.

Synthesis of Nanorod g-C3N3/Ag3PO4 Composites and Photocatalytic Activity for Removing Organic Dyes under Visible Light Condition

  • Se Hwan Park;Jeong Won Ko;Weon Bae Ko
    • Elastomers and Composites
    • /
    • v.59 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • Nanorod graphitic carbon nitride (g-C3N4) was synthesized by reacting melamine (C3H6N6) with trithiocyanuric acid (C3H3N3S3) in distilled water for 10 h at room temperature. The resulting mixture was calcined at 550℃ for 2 h in an electric furnace under an air atmosphere. Nanorod g-C3N4/Ag3PO4 composites were prepared by adding nanorod graphitic carbon nitride (g-C3N4) powder, silver nitrate (AgNO3), ammonia (NH3·H2O, 25.0-30.0%), and sodium hydrogen phosphate (Na3HPO4) to distilled water. The samples were characterized via X-ray diffraction, scanning electron microscopy, and Fourier-transform infrared spectroscopy. The photocatalytic activities of the nanorod g-C3N4/Ag3PO4 composites were demonstrated via the degradation of organic dyes, such as methylene blue and methyl orange, under blue light-emitting diode irradiation and evaluated using UV-vis spectrophotometry.

Temperature changes under demineralized dentin during polymerization of three resin-based restorative materials using QTH and LED units

  • Mousavinasab, Sayed-Mostafa;Khoroushi, Maryam;Moharreri, Mohammadreza;Atai, Mohammad
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.3
    • /
    • pp.155-163
    • /
    • 2014
  • Objectives: Light-curing of resin-based materials (RBMs) increases the pulp chamber temperature, with detrimental effects on the vital pulp. This in vitro study compared the temperature rise under demineralized human tooth dentin during light-curing and the degrees of conversion (DCs) of three different RBMs using quartz tungsten halogen (QTH) and light-emitting diode (LED) units (LCUs). Materials and Methods: Demineralized and non-demineralized dentin disks were prepared from 120 extracted human mandibular molars. The temperature rise under the dentin disks (n = 12) during the light-curing of three RBMs, i.e. an Ormocer-based composite resin (Ceram. X, Dentsply DeTrey), a low-shrinkage silorane-based composite (Filtek P90, 3M ESPE), and a giomer (Beautifil II, Shofu GmbH), was measured with a K-type thermocouple wire. The DCs of the materials were investigated using Fourier transform infrared spectroscopy. Results: The temperature rise under the demineralized dentin disks was higher than that under the non-demineralized dentin disks during the polymerization of all restorative materials (p < 0.05). Filtek P90 induced higher temperature rise during polymerization than Ceram.X and Beautifil II under demineralized dentin (p < 0.05). The temperature rise under demineralized dentin during Filtek P90 polymerization exceeded the threshold value ($5.5^{\circ}C$), with no significant differences between the DCs of the test materials (p > 0.05). Conclusions: Although there were no significant differences in the DCs, the temperature rise under demineralized dentin disks for the silorane-based composite was higher than that for dimethacrylate-based restorative materials, particularly with QTH LCU.