Browse > Article
http://dx.doi.org/10.4313/TEEM.2012.13.1.16

Illuminance Distribution and Photosynthetic Photon Flux Density Characteristics of LED Lighting with Periodic Lattice Arrangements  

Jeon, Hee-Jae (Research Center for Photonics and Information Technology Convergences, HAN'A ESSES Co., Ltd.)
Ju, Kang-Sig (Research Center for Photonics and Information Technology Convergences, HAN'A ESSES Co., Ltd.)
Joo, Jai-Hwang (Research Center for Photonics and Information Technology Convergences, HAN'A ESSES Co., Ltd.)
Kim, Hyun-Gyun (Department of Electrical, Electronics and Computer Engineering, Chonnam National University)
Publication Information
Transactions on Electrical and Electronic Materials / v.13, no.1, 2012 , pp. 16-18 More about this Journal
Abstract
LED lighting systems that combine lighting capability, emotional and physiological characteristics are required for lighting source and multifunctional applications. In this work, Simulation studies using optical analysis software packages, Light Tools, are presented. This is done to estimate the uniformity ratio of illuminance and photosynthetic photon flux density (PPFD) of the periodic 2D lattice arrangements, such as square, diamond, two-way bias quadrangular, hexagonal, and Kagome lattices, under the same transmissivity, absorptance and reflectivity. It has been found out that the two-dimensional Kagome lattice arrangement exhibited high uniformity ratio of illuminance and PPFD compared to other lattices. Accordingly, these results can be used to guide a design and improve the lighting environment which in turn would maximize the uniform distributions of illuminance.
Keywords
LED (Light Emitting Diode); Uniformity ratio of illuminance; PPFD (Photosynthetic Photon Flux Density); 2D Kagome lattice;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y.-H. Lee, B.-K. Lee, I. Jeon, and K.-J. Kang, Acta Mater. 55, 6084 (2007) [DOI: 10.1016/j.actamat.2007.07.023].   DOI   ScienceOn
2 W.-C. Chen, T.-T. Lai, M.-W. Wang, and H.-W. Hung, Expert Syst. Appl. 38, 11976 (2011) [DOI: 10.1016/j.eswa.2011.03.092].   DOI   ScienceOn
3 R. W. Mills, A. Uhl, G. B. Blackwell, and K. D. Jandt, Biomaterials 23, 2955 (2002) [DOI: 10.1016/S0142-9612(02)00024-8].   DOI   ScienceOn
4 H.-C. Chen and G.-Y. Wu, Opt. Commun. 283, 4882 (2010) [DOI: 10.1016/j.optcom.2010.07.055].   DOI   ScienceOn
5 Y.-C. Chang, C.-J. Ou, Y.-S. Tsai , and F.-S. Juang, Opt. Rev. 16(3), 323 (2009) [DOI:10.1007/s10043-009-0059-7].   DOI
6 J.-G. Chang and Y.-B. Fang, Opt. Eng. 46(4), 043002 (2007) [DOI: 10.1117/1.2721423].   DOI   ScienceOn
7 M.-W. Wang and C.-C. Tseng, Opt. Express 17(6), 4718 (2009) [DOI: 10.1364/OE.17.004718].   DOI
8 P.-Y. Maeda, P.-B. Catrysse and B.-A Wandell, Proc. SPIE 5678, 48 (2005) [DOI: 10.1117/12.588153].   DOI
9 J. Lee, S. Hofmann, M. Thomschke, M. Furno, Y. H. Kim, B. Lüssem, and K. Leo, Appl. Phys. Lett. 99, 073303 (2011) [DOI: 10.1063/1.3628292].   DOI   ScienceOn
10 J.-H. Joo, K.-J. Kang, T. Kim, and T. J. Lu, Int. J. Heat Mass Transfer 54, 5658 (2011) [DOI: 10.1016/j.ijheatmasstransf er.2011.08.018].   DOI   ScienceOn