• Title/Summary/Keyword: Light-emitting Diode

Search Result 1,407, Processing Time 0.03 seconds

Emission Characteristics of VOCs Distributions in Semiconductor Workplace (반도체 작업환경의 VOCs 농도분포 특성)

  • Lee, Jeong Joo
    • Journal of the Korean Society of Urban Environment
    • /
    • v.18 no.4
    • /
    • pp.503-509
    • /
    • 2018
  • In this study, a Proton-Transfer Reaction-Time-of-Flight Mass spectrometer (PTR-TOF-MS) was used for the continuous monitoring of Volatile Organic Compounds (VOCs) emitted from semiconductor workplace such as photolithography (PHOTO), flat panel display (FPD), organic light emitting diode (OLED), etching (WET) process. The averaged VOCs mixing ratio in the such workplace, PHOTO was 6.5 ppm, FPH was 6.4 ppm, WET was 2.0 ppm and OLED was 1.3 ppm, respectively. The abundance of VOCs in the workplace were methyl ethyl ketone (MEK) with 2.8 ppm (69%) and acetaldehyde with 0.5 ppm (13.2%). Depending on the semiconductor process characteristics, various VOCs have been observed in the workplace. The VOCs mixing ratio are lower than the workplace regulation standard (TWA), it is necessary to continuously monitor and effectively manage these VOCs.

Feasibility of a New Desktop Motion Analysis System with a Video Game Console for Assessing Various Three-Dimensional Wrist Motions

  • Kim, Kwang Gi;Park, Chan Soo;Jeon, Suk Ha;Jung, Eui Yub;Ha, Jiyun;Lee, Sanglim
    • Clinics in Orthopedic Surgery
    • /
    • v.10 no.4
    • /
    • pp.468-478
    • /
    • 2018
  • Background: The restriction of wrist motion results in limited hand function, and the evaluation of the range of wrist motion is related to the evaluation of wrist function. To analyze and compare the wrist motion during four selected tasks, we developed a new desktop motion analysis system using the motion controller for a home video game console. Methods: Eighteen healthy, right-handed subjects performed 15 trials of selective tasks (dart throwing, hammering, circumduction, and winding thread on a reel) with both wrists. The signals of light-emitting diode markers attached to the hand and forearm were detected by the optic receptor in the motion controller. We compared the results between both wrists and between motions with similar motion paths. Results: The parameters (range of motion, offset, coupling, and orientations of the oblique plane) for wrist motion were not significantly different between both wrists, except for radioulnar deviation for hammering and the orientation for thread winding. In each wrist, the ranges for hammering were larger than those for dart throwing. The offsets and the orientations of the oblique plane were not significantly different between circumduction and thread winding. Conclusions: The results for the parameters of dart throwing, hammering, and circumduction of our motion analysis system using the motion controller were considerably similar to those of the previous studies with three-dimensional reconstruction with computed tomography, electrogoniometer, and motion capture system. Therefore, our system may be a cost-effective and simple method for wrist motion analysis.

Process Parameter Selection for Plasma Electrolytic Oxidation to Improve Heat Dissipation Performance of Aluminum Alloy Heat Sink for Shipboard LED Luminaries (선박용 LED 등기구의 알루미늄 합금 방열판의 방열성능 향상을 위한 플라즈마 전해 산화의 공정변수 선정에 관한 연구)

  • Lee, Jung-Hyung;Jeong, In-Kyo;Han, Min-Su
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.6
    • /
    • pp.415-420
    • /
    • 2018
  • The possibility of an improvement in heat dissipation performance of aluminum alloy heat sink for shipboard LED luminaries through plasma electrolytic oxidation (PEO) was investigated. Four different PEO coatings were produced on aluminum alloy 5052 in silicate based alkaline solution by varying current density ($50{\sim}200mA/cm^2$). On voltage-time response curves, three stages were clearly distinguished at all current densities, namely an initial linear increase, slowdown of increase rate, and steady state(constant voltage). It was found that the increase in current density caused the breakdown voltage to increase. Two different surface morphologies - coralline porous structure and pancake structure - were confirmed by SEM examination. The coralline porous structure was predominant in the coatings produced at lower current densities (50 and $100mA/cm^2$) while under high current densities(150 and $200mA/cm^2$) the pancake structure became dominant. The coating thickness was measured and found to be in a range between about $13{\mu}m$ and $44{\mu}m$, showing increasing thickness with increasing current density. As a result, $100mA/cm^2$ was proposed as an effective process parameter to improve the heat dissipation performance of aluminum alloy heat sink, which could lower the LED operating temperature by about 30%.

Optical Properties of CaYAlO4:Tb3+/Eu3+/Ce3+ Phosphors (CaYAlO4:Tb3+/Eu3+/Ce3+형광체의 광학적 특성 분석)

  • Kang, Taewook;Ryu, Jongho;Kim, Jongsu;Kim, Gwang Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.86-90
    • /
    • 2017
  • $Tb^{3+}$ or $Eu^{3+}$ or $Ce^{3+}$-doped $CaYAlO_4$ phosphor were synthesized by solid-state method. $CaYAlO_4:Tb^{3+}$ is shown that the $Tb^{3+}$-doping concentration has a significant effect on the $^5D_4/^5D_3{\rightarrow}7F_J$ (J=6,...,0) emission intensity of $Tb^{3+}$. The $CaYAlO_4:Tb^{3+}$ phosphors show tunable photoluminescence from blue to yellow with the change of doping concentration of $Tb^{3+}$ ions. The $CaYAlO_4:Eu^{3+}$ phosphors exhibit a red-orange emission of $Eu^{3+}$ corresponding to $^5D_0$, $_{1,2}{\rightarrow}^7F_J$ (J=4,...,0) transitions. The $CaYAlO_4:Ce^{3+}$ phosphors show a blue emission due to $Ce^{3+}$ ions transitions from the 5d excited state to the $^2F_{5/2}$ and $^2F_{7/2}$ ground states. The decay time of $CaYAlO_4:Tb^{3+}$ phosphors decrease from 1.33 ms to 0.97 ms as $Tb^{3+}$ concentration increases from 0.1 mol% to 7 mol%. The decay time of $CaYAlO_4:Eu^{3+}$ phosphors increase from 0.94 ms to 1.17 ms as $Eu^{3+}$ concentration increases from 1 mol% to 9 mol%.

  • PDF

Self-Powered Integrated Sensor Module for Monitoring the Real-Time Operation of Rotating Devices (회전기기 실시간 동작상태 모니터링을 위한 자가발전 기반 센서모듈)

  • Kim, Chang Il;Yeo, Seo-Yeong;Park, Buem-Keun;Jeong, Young-Hun;Paik, Jong Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.311-317
    • /
    • 2019
  • Rotating devices are commonly installed in power plants and factories. This study proposes a self-powered sensor node that is powered by converting the vibration energy of a rotating device into electrical energy. The self-powered sensor consists of a piezoelectric harvester for self-power generation, a rectifier circuit to rectify the AC signal, a sensor unit for measuring the vibration frequency, and a circuit to control the light emitting diode (LED) lighting. The frequency of the vibration source was measured using a piezoelectric-cantilever-type vibration frequency sensor. A green LED was illuminated when the measured frequency was within the normal range. The power generated by the piezoelectric harvester was determined, and the LED operation was assessed in terms of the vibration frequency. The piezoelectric harvester was found to generate a power of 3.061 mW or greater at a vibration acceleration of 1.2 g ($1g=9.8m/s^2$) and vibration frequencies between 117 and 123 Hz. Notably, the power generated was 4.099 mW at 122 Hz. As such, our self-powered sensor node can be used as a module for monitoring rotating devices, because it can convert vibration energy into electrical energy when installed on rotating devices such as air compressors.

Simulation of Capillary Flow Along a Slot-die Head for Stripe Coatings (Stripe 코팅용 슬롯 다이 헤드 모세관 유동 전산모사)

  • Yoo, Su-Ho;Lee, Jin-Young;Park, Jong-Woon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.92-96
    • /
    • 2019
  • In the presence of ${\mu}-tip$ embedded in a slot-die head for stripe coatings, there arises the capillary flow that limits an increase of the stripe density, which is required for the potential applications in organic light-emitting diode displays. With an attempt to suppress it, we have employed a computational fluid dynamics software and performed simulations by varying the ${\mu}-tip$ length and the contact angles of the head lip and ${\mu}-tip$. We have first demonstrated that such a capillary flow phenomenon (a spread of solution along the head lip) observed experimentally can be reproduced by the computational fluid dynamics software. Through simulations, we have found that stronger capillary flow is observed in the hydrophilic head lip with a smaller contact angle and it is suppressed effectively as the contact angle increases. When the contact angle of the head lip increases from $16^{\circ}$ to $130^{\circ}$, the distance a solution can reach decreases sharply from $256{\mu}m$ to $44{\mu}m$. With increasing contact angle of the ${\mu}-tip$, however, the solution flow along the ${\mu}-tip$ is disturbed and thus the capillary flow phenomenon becomes more severe. If the ${\mu}-tip$ is long, the capillary flow also appears strong due to an increase of flow resistance (electronic-hydraulic analogy). It can be suppressed by reducing the ${\mu}-tip$ length, but not as effectively as reducing the contact angle of the head lip.

Theoretical Study for Thermally Activated Delayed Fluorescence (TADF) Property in Organic Light-Emitting Diode (OLED) Candidates (유기발광소재(OLED) 후보물질의 지연형광(TADF) 성질에 대한 이론적 연구)

  • Seo, Hyun-il;Jeong, Hyeon Jin;Yoon, Byung Jin;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.3
    • /
    • pp.151-159
    • /
    • 2019
  • The TADF properties for carbazol-dicyanobenzene, carbazol-diphenyl sulfone, carbazol-benzonitrile derivatives as OLED candidate materials are theoretically investigated using density functional theory (DFT) with $6-31G^{**}$, cc-pVDZ, and cc-pVTZ basis sets. The optimized geometries, harmonic vibrational frequencies, and HOMO-LUMO energy separations are predicted at the B3LYP/$6-31G^{**}$ level of theory. The harmonic vibrational frequencies of the molecules considered in this study show all real numbers implying true minima. The time dependent density functional theory (TD-DFT) calculations have been also applied to investigate the absorption and emission wavelength (${\lambda}_{max}$), energy differences (${\Delta}E_{ST}$) between excited singlet ($S_1$) and triplet ($T_1$) states of candidate materials.

A Study on Selective Transfer and Reflow Process of Micro-LED using Micro Stamp (마이크로 스탬프를 이용한 Micro-LED 개별 전사 및리플로우 공정에 관한 연구)

  • Han, Seung;Yoon, Min-Ah;Kim, Chan;Kim, Jae-Hyun;Kim, Kwang-Seop
    • Tribology and Lubricants
    • /
    • v.38 no.3
    • /
    • pp.93-100
    • /
    • 2022
  • Micro-light emitting diode (micro-LED) displays offer numerous advantages such as high brightness, fast response, and low power consumption. Hence, they are spotlighted as the next-generation display. However, defective LEDs may be created due to non-uniform contact loads or LED alignment errors. Therefore, a repair process involving the replacement of defective LEDs with favorable ones is necessitated. The general repair process involves the removal of defective micro-LEDs, interconnection material transfer, as well as new micro-LED transfer and bonding. However, micro-LEDs are difficult to repair since their size decreases to a few tens of micron in width and less than 10 ㎛ in thickness. The conventional nozzle-type dispenser for fluxes and the conventional vacuum chuck for LEDs are not applicable to the micro-LED repair process. In this study, transfer conditions are determined using a micro stamp for repairing micro-LEDs. Results show that the aging time should be set to within 60 min, based on measuring the aging time of the flux. Additionally, the micro-LEDs are subjected to a compression test, and the result shows that they should be transferred under 18.4 MPa. Finally, the I-V curves of micro-LEDs processed by the laser and hot plate reflows are measured to compare the electrical properties of the micro-LEDs based on the reflow methods. It was confirmed that the micro-LEDs processed by the laser reflow show similar electrical performance with that processed by the hot plate reflow. The results can provide guidance for the repair of micro-LEDs using micro stamps.

Micro-LED Mass Transfer using a Vacuum Chuck (진공 척을 이용한 마이크로 LED 대량 전사 공정 개발)

  • Kim, Injoo;Kim, Yonghwa;Cho, Younghak;Kim, Sungdong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.121-127
    • /
    • 2022
  • Micro-LED is a light-emitting diode smaller than 100 ㎛ in size. It attracts much attention due to its superior performance, such as resolution, brightness, etc., and is considered for various applications like flexible display and VR/AR. Micro-LED display requires a mass transfer process to move micro-LED chips from a LED wafer to a target substrate. In this study, we proposed a vacuum chuck method as a mass transfer technique. The vacuum chuck was fabricated with MEMS technology and PDMS micro-mold process. The spin-coating approach using a dam structure successfully controlled the PDMS mold's thickness. The vacuum test using solder balls instead of micro-LED confirmed the vacuum chuck method as a mass transfer technique.

Effects on the Al2O3 Thin Film by the Ar Pulse Time in the Atomic Layer Deposition (원자층 증착에 있어서 아르곤 펄스 시간이 Al2O3 박막에 미치는 효과)

  • Kim, Ki Rak;Cho, Eou Sik;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.157-160
    • /
    • 2021
  • As an insulator for a thin film transistor(TFT) and an encapsulation material of organic light emitting diode(OLED), aluminum oxide (Al2O3) has been widely studied using several technologies. Especially, in spite of low deposition rate, atomic layer deposition (ALD) has been used as a process method of Al2O3 because of its low process temperature and self-limiting reaction. In the Al2O3 deposition by ALD method, Ar Purge had some crucial effects on the film properties. After reaction gas is injected as a formation of pulse, an inert argon(Ar) purge gas is injected for gas desorption. Therefore, the process parameter of Ar purge gas has an influence on the ALD deposited film quality. In this study, Al2O3 was deposited on glass substrate at a different Ar purge time and its structural characteristics were investigated and analyzed. From the results, the growth rate of Al2O3 was decreased as the Ar purge time increases. The surface roughness was also reduced with increasing Ar purge time. In order to obtain the high quality Al2O3 film, it was known that Ar purge times longer than 15 sec was necessary resulting in the self-limiting reaction.