• Title/Summary/Keyword: Light weight composite

Search Result 291, Processing Time 0.039 seconds

A study on the design and cooling of the heat sink with hybrid structure of conductive polymer composite and metal (열전도성 고분자 복합소재/금속 소재 하이브리드 구조의 방열기구 설계 및 방열특성에 관한 연구)

  • Yoo, Yeong-Eun;Kim, Duck Jong;Yoon, Jae Sung;Park, Si-Hwan
    • Design & Manufacturing
    • /
    • v.10 no.3
    • /
    • pp.14-19
    • /
    • 2016
  • Thermally or electrically conductive filler reinforced polymer composites are extensively being developed as the demand for light weight material increases rapidly in industiral applications need good conductivity such as heat sink of the electronics or light. Carbon or ceramic materials like graphite, carbon nanotube or boron nitride are typical conductive fillers with good thermal or electical conductivity. Using these conductive fillers, the polymer composites in the market show wide range of thermal conductivity from approximately 1 W/mK to 20 W/mK, which is quite enhanced considering the thermal conductivity lower than 0.5 W/mK for most polymeric materials. The practical use of these composites, however, is yet limited to specific applications because most composites are still not conductive enough or too difficult to process, too brittle, too expensive for higher conductivity. For practical use of conductive composite, the thermal conductivity required depending on the heat releasing mode are studied first for simplified unit cooling geometry to propose thermal conductivities of the composites for reasonable cooling performance comparing with the metal heat sink as a reference. Also, as a practical design for heat sink based on polymer composite, composite and metal sheet hybrid structures are investigated for LED lamp heat sink and audio amplication module housing to find that this hybrid structure can be a good solution considering all of the cooling performance, manufacturing, mechanical performance, cost and weight.

Material Trends of Nozzle Extension for Liquid Rocket Engine (액체로켓엔진 노즐확장부 소재기술 동향)

  • Lee, Keum-Oh;Ryu, Chul-Sung;Choi, Hwan-Seok
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.9 no.1
    • /
    • pp.139-149
    • /
    • 2011
  • The combustion chamber and nozzle of a liquid rocket engine need thermal protection against the high temperature combustion gas. The nozzle extension of a high-altitude engine also has to be compatible with high temperature environment and several kinds of cooling methods including gas film cooling, ablative cooling and radiative cooling are used. Especially for an upper-stage nozzle extension having a large expansion ratio, the weight impact on the launcher performance is crucial and it necessitated the development of light-weight refractory material. The present survey on the nozzle extension materials employed in the liquid rocket engines of USA, Russia and European Union has revealed a trend that the heavier metals like stainless steels and titanium alloys are being substituted with light weight carbon fiber or ceramic matrix composite materials.

  • PDF

Structural Behaviour of Composite Rigmats with Snap-fit connection (가도용 착탈조립식 복합소재 리그매트의 구조거동 분석)

  • Lee, Sung-Woo;Hong, Kee-Jeung;Cho, Nam-Hoon;Kim, In-Tai
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.533-538
    • /
    • 2007
  • Since glass-fiber reinforced composite decks have high-strength, light-weight and high durability, many researches on the composite decks for bridges are currently performed and many composite decks are developed. Some of the developed composite decks can be applied as rigmats for temporary roads such as oil developing temporary roads. In this paper, a composite deck for rigmat is developed and studied. Structural behavior of the developed composite deck for rigmat is verified by both analysis and experiment.

  • PDF

A STUDY ON THE FLOW AND DIMENSIONAL CHANGE OF POSTERIOR COMPOSITE RESINS (구치용(臼齒用) 복합(複合)레진의 유동성(流動性) 및 용적변화(容積變化)에 관(關)한 연구(硏究))

  • Lee, Myung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.2
    • /
    • pp.602-610
    • /
    • 1994
  • The purpose of this study was to measure the free flow of the unpolymerized resin by its weight for 10 minutes by one minute interval, and to measure the dimensional change of composite resins during the irradiation of visible light(Quich light VL-l Kuraray Japan) using visible leser displacement meter(LC-2210 Kerence Japan). The unpolymerized resin was cured by the visible light for 40 seconds, the dimensional change was measured at the begining of irradiation for 5 minutes. The results were as follows : 1. In free flow LFI was the largest, BLI was the smallest at $23^{\circ}C$ and CFP was the largest, and BL was the smallest at $37^{\circ}C$. 2. In dimensional change CFI, LFP, LEI and CFP was excessively contracted flow the begining of irradiation until 15 seconds but BLI and BL was excessively contracted until 30 seconds BL and BLI in dimensional change was much larger than LFI and CFP.

  • PDF

Effects of Additives on Dental Composite Resins (치과용 복합레진에 대한 첨가제의 영향)

  • 정진희;홍광일;고재영;안세영;안광덕;한동근
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.139-145
    • /
    • 2002
  • Bis-GMA, 2.2-bis[p(2-hydroxy-3-methacryloyloxypropokyl)phenyl]Propane, is an essential component as a multifunctional methacrylate prepolymer in the light-curable polymeric dental composite resins. Two hydroxyl groups of the Bis-GMA molecule are considered to induce water sorption of the photocured composite resin in a mouth, resulting in gradual long-term deterioration of aesthetics and mechanical properties of the composite resins. In this study, some additives such as light stabilizer and antioxidant were added to composite resins to promote durability and storage stability of the last product. First of all, color change increased as a light stabilizer. Tinuvin P, was added to the composed resins and color stability was improved as an antioxidant, Irganox 245, was added to ones. In addition, when Tinuvin P and Irganox 245 were added together to the composed resins. the color stability was enhanced and mechanical properties such as diametral tensile strength before and after acceleration tests were also not greatly decreased. Therefore, when 0.5 weight Percent of Tinuvin P and 0.1 weight percent of Irganox 245 were added together to dental composite resins. the durability and color stability were enhanced, and furthermore the storage stability was also improved for the composed resins.

Improvement of Fatigue Life and Vibrational Characteristics of Composite Material Propeller Shaft of Vehicle (수송기계용 복합재료 추진축의 피로수명 및 진동특성 향상에 관한 연구)

  • 공창덕;정진호;정종철;김기범
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.104-117
    • /
    • 1999
  • The Composite materials has been used in the field of high technology industry because of high specific stiffness and high specific strength. Specially, the composite materials has been widely applied to the field of the aircraft and the transportation by the effectiveness of light weight due to low specific weight and reduction of the parts due to bonding, molding and so on. These advantages about the composite have led to study and apply in the transmission shaft for the aircraft and the drive shaft for the automobile. The composite material propeller shaft with the high vibrational stability was designed and analyzed. In order to verify the analysis, two types of experimental test which are the FFT analyzer with impact hammer and the rotational equipment were applied.

  • PDF

Experimental Investigation of Mechanical and Tribological Characteristics of Al 2024 Matrix Composite Reinforced by Yttrium Oxide Particles

  • Hamada, Mohanad Lateef;Alwan, Ghazwan Saud;Annaz, Abdulkader Ahmed;Irhayyim, Saif Sabah;Hammood, Hashim Shukur
    • Korean Journal of Materials Research
    • /
    • v.31 no.6
    • /
    • pp.339-344
    • /
    • 2021
  • Composite materials offer distinct and unique properties that are not naturally inherited in the individual materials that make them. One of the most attractive composites to manufacture is the aluminum alloy matrix composite, because it usually combines easiness of availability, light weight, strength, and other favorable properties. In the current work, Powder Metallurgy Method (PMM) is used to prepare Al2024 matrix composites reinforced with different mixing ratios of yttrium oxide (Y2O3) particles. The tests performed on the composites include physical, mechanical, and tribological, as well as microstructure analysis via optical microscope. The results show that the experimental density slightly decreases while the porosity increases when the reinforcement ratio increases within the selected range of 0 ~ 20 wt%. Besides this, the yield strength, tensile strength, and Vickers hardness increase up to a 10 wt% Y2O3 ratio, after which they decline. Moreover, the wear results show that the composite follows the same paradigm for strength and hardness. It is concluded that this composite is ideal for application when higher strength is required from aluminum composites, as well as lighter weight up to certain values of Y2O3 ratio.

Optimal design of Natural Fiber Composite Structure for Automobile

  • Lee, Haseung;Kong, Changduk;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.1
    • /
    • pp.21-24
    • /
    • 2016
  • In this study, a optimal design on the hood automotive using eco-friendly natural fiber composites is performed. The hood of an automobile is determined by dividing the Inner panel shape through optimization phase to outer panel and inner panel. It was performed to optimize the size of the thickness of the inner panel and the outer panel by applying a flax/epoxy composite materials. The optimized shape was evaluated for weight-lightening, stability and the pedestrian collision safety. Through the resin flow analysis are confirmed to molding possibility judgment of product.

A Study on Behavior of Snap-fit Connection in GFRP composite deck during assembling or disassembling (수직결합식 복합소재 바닥판 연결부의 착탈시 거동분석)

  • Yoo, Suk-Jin;Lee, Sung-Woo;Hong, Kee-Jeung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.282-287
    • /
    • 2008
  • Since glass-fiber reinforced composite decks have high-strength, light-weight and high durability, many researchs on the composite decks for bridges are currently performed and many composite decks are developed. In this paper, a composite deck with snap-fit connection for pedestrian bridge is developed and studied. A study on behavior of snap-fit connection of composite deck for pedestrian bridge during assembling or disassembling is performed by analysis and experiment.

  • PDF

Transport Capacity Design and Characteristics Evaluation of Al/Cu Composite Busbar for Power Equipments (전력기기용 Al/Cu 복합 부스바의 통전용량 설계 및 특성 평가)

  • Bae, Joon-Han;Kim, Hae-Joon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.12
    • /
    • pp.628-632
    • /
    • 2006
  • This paper deals with the electric and thermal characteristics of the composite busbar composed of aluminum and copper. When AC current is flowing in Cu busbar used widely in conservative equipments like power cable, transformer, and switchgear & controlgear most current is concentrated on the surface of the busbar by the skin effect. Therefore, if the Cu region in the busbar having low current density is replaced with aluminum, we can largely reduce the product cost and weight of the busbar. To conform the performance of the composite busbar, we designed and fabricated a test Al/Cu composite busbar. Maximun temperature rise of the busbar was $35^{\circ}C$ when 1600 Arms of AC current was applied to the test composite busbar($120mm{\times}10mm$). Based on test results, we can expect to make the low-priced and light power equipments using the Al/Cu composite busbar.