• Title/Summary/Keyword: Light extraction efficiency

Search Result 111, Processing Time 0.03 seconds

Improvement in LED structure for enhanced light-emission

  • Park, Seong-Ju
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.21-21
    • /
    • 2003
  • To increase the light-emission efficiency of LED, we increased the internal and external quantum efficiency by suppressing the defect formation in the quantum well and by increasing the light extraction efficiency in LED, respectively. First, the internal quantum efficiency was improved by investigating the effect of a low temperature (LT) grown p-GaN layer on the In$\sub$0.25/GaN/GaN MQW in green LED. The properties of p-GaN was optimized at a low growth temperature of 900oC. A green LED using the optimized LT p-type GaN clearly showed the elimination of blue-shift which is originated by the MQW damage due to the high temperature growth process. This result was attributed to the suppression of indium inter-diffusion in MQW layer as evidenced by XRD and HR-TEM analysis. Secondly, we improved the light-extraction efficiency of LED. In spite of high internal quantum efficiency of GaN-based LED, the external quantum efficiency is still low due to the total internal reflection of the light at the semiconductor-air interface. To improve the probability of escaping the photons outside from the LED structure, we fabricated nano-sized cavities on a p-GaN surface utilizing Pt self-assembled metal clusters as an etch mask. Electroluminescence measurement showed that the relative optical output power was increased up to 80% compared to that of LED without nano-sized cavities. I-V measurement also showed that the electrical performance was improved. The enhanced LED performance was attributed to the enhancement of light escaping probability and the decrease of resistance due to the increase in contact area.

  • PDF

Enhancement in the light extraction efficiency of 405 nm light-emitting diodes by adoption of a Ti-Al reflection layer (Ti-Al 반사막을 이용한 405 nm LED의 광추출 효율 향상)

  • Kim, C.Y.;Kwon, S.R.;Lee, D.H.;Noh, S.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.211-214
    • /
    • 2008
  • GaN-based light-emitting diodes (LEDs) of a 405 nm wavelength have been fabricated on a sapphire substrate by metal organic chemical vapor deposition (MOCVD). In order to reflect the photons, which are generated in the InGaN active region and emitted to the backside, to the front surface, a reflection layer was deposited onto the back of the substrate. Aluminum was used as the reflection layer and Al was deposited on the sample followed by Ti evaporation for firm adhesion of the reflection layer to the substrate. The light extraction efficiency was enhanced 52 % by adoption of the Ti-Al reflection layer.

Application of Polystyrene/SiO2 Core-shell Nanospheres to Improve the Light Extraction of GaN LEDs

  • Yeon, Seung Hwan;Kim, Kiyong;Park, Jinsub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.314.2-314.2
    • /
    • 2014
  • To improve the optical and electrical properties of commercialized GaN-based light-emitting diodes (LEDs), many methods are suggested. In recent years, great efforts have been made to improve the internal quantum efficiency and light extraction efficiency (LEE) and promising approaches are suggested using a patterned sapphire substrate (PSS), V-pit embedded LED structures, and silica nanostructures. In this study, we report on the enhancement of photoluminescence (PL) intensity in GaN-based LED structures by using the combination of SiO2 (silica) nanospheres and polystyrene/SiO2 core-shell nanospheres. The SiO2 nanospheres-coated LED structure shows the slightly increased PL intensity. Moreover the polystyrene/SiO2 core-shell nanospheres-coated structure shows the more increase of PL intensity comparing to that of only SiO2 spheres-coated structure and the conventional structure without coating of nanospheres. The Finite-difference time-domain (FDTD) simulation results show corresponding result with experimentally observed results. The mechanism of enhancement of PL intensity using the coating of polystyrene/SiO2 core-shell nanospheres on LED surface can be explained by the improvement in extraction efficiency by both increasing the probability of light escape by reducing Fresnel reflection and by multiple scattering within the core-shell nanospheres.

  • PDF

High extraction efficiency of photonic crystal microcavity GaN based light emitting diode

  • Cho, Min-Su;Moon, Ki-Won;Han, Hae-Wook;Yoon, Ji-Su;Jeong, Byoung-Koan;Shin, Jong-Keun;Chung, In-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.471-472
    • /
    • 2007
  • We have demonstrated that the light extraction efficiency of GaN based light emitting diodes (LEDs) can be significantly enhanced by using photonic crystal and microcavity (PCMC) effects. It was found that the extraction efficiency of the PCMC-LEDs is 9.5 times larger than that of the normal LEDs.

  • PDF

Photon Extraction Efficiency in InGaN Light-emitting Diodes Depending on Chip Structures and Chip-mount Schemes (InGaN LED에서 칩 구조 및 칩마운트 구조에 따른 광추출효율에 관한 연구)

  • Lee, Song-Jae
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.275-286
    • /
    • 2005
  • The performance of the InGaN LED's in terms of the photon extraction efficiency has been analyzed by the Monte Carlo photon simulation method. Simulation results show that the sidewall slanting scheme, which works well for the AlInGaP or InGaN/SiC LED, plays a very minimal role in InGaN/sapphire LED's. In contrast to InGaN/SiC LED's, the lower refractive index sapphire substrate restricts the generated photons to enter the substrate, minimizing the chances for the photons to be deflected by the slanted sidewalls of the epitaxial semiconductor layers that are usually very thin. The limited photon transmission to the sapphire substrate also degrades the. photon extraction efficiency especially in the epitaxial-side down mount. One approach to exploit the photon extraction potential of the epitaxial-side down mount may be to texture the substrate-epitaxy interface. In this case, randomized photon deflection off the textured interface directly increases the number of the photons entering the sapphire substrate, from which they easily couple out of the chip and thereby improving the photon extraction efficiency drastically.

Solution-processible corrugated structure and scattering layer for enhanced light extraction from organic light-emitting diodes

  • Hyun, Woo Jin;Im, Sang Hyuk;Park, O Ok;Chin, Byung Doo
    • Journal of Information Display
    • /
    • v.13 no.4
    • /
    • pp.151-157
    • /
    • 2012
  • A simple method of fabricating out-coupling structures was demonstrated via solution-processing to enhance light extraction from organic light-emitting diodes (OLEDs). Scattering layers were easily obtained by spin-coating an $SiO_2$ sol solution that contained $TiO_2$ particles. By introducing the scattering layer and the solution-processible corrugated structure as internal and external extraction layers, the OLEDs showed increased external quantum efficiency without a change in the electroluminescence spectrum compared to conventional devices. Using these solution-processible out-coupling structures, nearly all-solution-processed OLEDs with enhanced light extraction could be fabricated. The light extraction enhancement is attributed to the suppression by the out-coupling structures of the light-trapping that arose at the interface of the glass substrate and the air.

Polymer Dispersed Liquid Crystal for Enhanced Light Out-Coupling Efficiency of Organic Light Emitting Diodes

  • Gasonoo, Akpeko;Ahn, Hyeon-Sik;Lee, Jonghee;Kim, Min-Hoi;Lee, Jae-Hyun;Choi, Yoonseuk
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.140-146
    • /
    • 2020
  • We investigated light extraction film based on polymer dispersed liquid crystal (PDLC) for application in organic light emitting diodes (OLEDs). At least 30 seconds of direct UV irradiation process for curing PDLC film on a bottom-emitting OLEDs was successfully achieved without damage on the intrinsic properties of the OLED. We demonstrated that high haze and transmittance can be tuned simultaneously by controlling the UV curing time. By adding PDLC as an external layer without any additional treatment, the light scattering and extraction is increased. Consequently, a PDLC scattering film with 89.8% and 59.9 of total transmittance and haze respectively, achieved about 16% of light intensity enhancement from integrating sphere measurement.

Design of Structure for High-Efficiency LEDs on Patterned Sapphire Substrate (LED용 사파이어 기판의 고효율 패턴 설계)

  • Kang, Ho-Ju;Song, Hui-Young;Jeong, Myung-Yung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.91-95
    • /
    • 2011
  • The light extraction efficiency in GaN based LED was analyzed qualitatively. The extraction efficiency was simulated with patterned shape, depth, size and spacing by using ray-tracing simulation. In simulation result, patterned shape and depth for the optimized extraction efficiency in PSS LED were in indented Hemi-sphere solid. Through the optimal patterning of the various factors, about 40% enhancement in extraction efficiency was obtained.

Improvement of Out-coupling Efficiency of Organic Light Emitting Device by Ion-beam Plasma-treated Plastic Substrate (이온빔 플라즈마 처리된 플라스틱 기판에 의한 OLED의 광추출 효율 향상)

  • Kim, Hyeun Woo;Song, Tae Min;Lee, Hyeong Jun;Jeon, Yongmin;Kwon, Jeong Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.7-10
    • /
    • 2022
  • A functional polyethylene terephthalate substrate to increase light extraction efficiency of organic light-emitting diodes is studied. We formed nano-structured PET surfaces by controlling the power, gas, and exposure time of the linear ion-beam. The haze of the polyethylene terephthalate can be controlled from 0.2% to 76.0% by changing the peak-to-valley roughness of nano structure by adjusting the exposure cycle. The treated polyethylene terephthalate shows average haze of 76.0%, average total transmittance of 86.6%. The functional PET increases the current efficiency of organic light-emitting diodes by 47% compared to that of organic light-emitting diode on bare polyethylene terephthalate. In addition to polyethylene terephthalate with light extraction performance, by conducting additional research on the development of functional PET with anti-reflection and barrier performance, it will be possible to develop flexible substrates suitable for organic light-emitting diodes lighting and transparent flexible displays.

Fabrication and Optical Properties of 2D Photonic Crystal Assisted Thin Film Phosphors

  • Oh, Jeong-Rok;Ko, Ki-Young;Do, Young-Rag
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.594-597
    • /
    • 2008
  • This presentation introduces a simple strategy for producing 2D photonic crystal layers (PCL) with different structures. In an attempt to improve extraction efficiency from the thin film phosphors (TFPs), this study have examined the effects of the structural variables of the 2D PCLs on the light extraction efficiency of TFPs.

  • PDF