• Title/Summary/Keyword: Ligand-exchange

Search Result 120, Processing Time 0.035 seconds

InP Quantum Dot - Organosilicon Nanocomposites

  • Dung, Mai Xuan;Mohapatra, Priyaranjan;Choi, Jin-Kyu;Kim, Jin-Hyeok;Jeong, So-Hee;Jeong, Hyun-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.191-191
    • /
    • 2012
  • InP quantum dot (QD) - organosilicon nanocomposites were synthesized and their photoluminescence quenching was mainly investigated because of their applicability to white LEDs (light emitting diodes). The as-synthesized InP QDs which were capped with myristic acid (MA) were incompatible with typical silicone encapsulants. Post ligand exchange the MA with a new ligand, 3-aminopropyldimethylsilane (APDMS), resulted in soluble InP QDs bearing Si-H groups on their surface (InP-APDMS) which allow embedding the QDs into vinyl-functionalized silicones through direct chemical bonding, overcoming the phase separation problem. However, the ligand exchange from MA to APDMS caused a significant decrease in the photoluminescent efficiency which is interpreted by ligand induced surface corrosion relying on theoretical calculations. The InP-APDMS QDs were cross-linked by 1,4-divinyltetramethylsilylethane (DVMSE) molecules via hydrosilylation reaction. As the InP-organosilicon nanocomposite grew, its UV-vis absorbance was increased and at the same time, the PL spectrum was red-shifted and, very interestingly, the PL was quenched gradually. Three PL quenching mechanisms are regarded as strong candidates for the PL quenching of the QD nano-composites, namely the scattering effect, Forster resonance energy transfer (FRET) and cross-linker tension preventing the QD's surface relaxation.

  • PDF

Complete Relaxation and Conformational Exchange Matrix (CORCEMA) Analysis of Saturation Transfer Difference (STD) NMR Spectra of Ligand-Protein Complexes

  • Krishna, N.Rama;Jayalakshmi, V.
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.6 no.2
    • /
    • pp.94-102
    • /
    • 2002
  • An interesting recent application of intermolecular NOE experiment is the saturation transfer difference NMR(STD-NMR) method that is useful in screening compound libraries to identify bio-active ligands. This technique also identifies the group epitopes of the bound ligand in a reversibly forming protein-ligand complex. We present here a complete relaxation and conformational exchange matrix (CORCEMA) theory (Moseley et al., J. Magn. Reson. B, 108, 243-261 (1995)) applicable for the STD-NMR experiment. Using some ideal model systems we have analyzed the factors that influence the STD intensity changes in the ligand proton NMR spectrum when the resonances from some protons on the receptor protein are saturated. These factors will be discussed and some examples of its application in some model systems will be presented. This CORCEMA theory for STD-NMR and the associated algorithm are useful in a quantitative interpretation of the STD-NMR effects, and are likely to be useful in structure-based drug design efforts. They are also useful in a quantitative characterization of protein-protein (or protein-nucleic acid) contact surfaces from an intermolecular cross-saturation NMR experiment.

  • PDF

Resin Synthesis of Adsorbent Uranium(VI) Ion using 1-Aza-18-Crown-6 (1-Aza-18-Crown-6를 이용한 우라늄(VI) 이온 흡착제 수지 합성)

  • Kim, Sun-Hwa;Kim, Hae-Jin
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.4 s.62
    • /
    • pp.49-60
    • /
    • 2006
  • The ion exchange resins have been synthesized from chlormethyl styrene - 1,4 - divinylbenzene(DVB) with 1%, 2%, 4% and 8%-crosslinking and 1-aza-18-crown-6 macrocyclic ligand by copolymerization method. Content of chlorine in styrene-DVB copolymer was decreased as crosslink increased and it is because as crosslink increased 1%, 2%, 4% and 8% DVB content increased and crosslink density increased and cavity was reduced. Functional group of resin almost disappeared as C-C1 peak around $700cm^{-1}$ was substituted with 1-aza-18-C-6 macrocyclic ligand and new peak of C-N around $1020cm^{-1}$ appeared, so it was confirmed that styrene-DVB copolymer and ligand were compounded. As crosslink increased in the analysis of element contents, it resulted in the reduction of nitrogen content and it is because as crosslink increased, it led to the reduction of chlorine content in the process of substitution reaction and it affected macrocyclic ligand substituted. Thermo analysis curve of functional synthetic resin decomposed three part of 1-aza-18-C-6, styrene, and DVB. Form of functional synthetic resin showed distortion of its particles as macrocyclic ligand was introduced to styrene-DVB copolymer and hydrogen of ligand caused substitution with chlorine element of styrene molecule.

Rates of Conformational Change of 3,3-Dimethylpiperidine and Solvent Effects on Its Conformation When Coordinated to the Paramagnetic Undecatungstocobalto(II)silicate Anion Studied by 1H NMR Spectroscopy

  • 현재원;소현수
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.9
    • /
    • pp.961-965
    • /
    • 1997
  • 1H NMR spectra of 3,3-dimethylpiperidine (1) at -70 to 30 ℃ exhibit gradual change from slow to rapid exchange between two alternate chair forms. The exchange rate constant was determined as a function of temperature by simulating the line shape of the signal from the two methyl groups using the modified Bloch equations. The resulting free energy of activation is ΔG* = 44.4±1.9 kJ mol-1 at 298 K. The 1H NMR spectrum of a D2O or dimethylsulfoxide-d6 (DMSO-d6) solution containing 1 and [SiW11CoⅡO39]6- exhibits separate signals for the free ligand and the complex, indicating that the ligand exchange is slow on the NMR time scale. In D2O the piperidine ring is frozen as a chair form even at room temperature with the cobalt ion bonded to the axial position of the nitrogen atom. When DMSO-d6 is added to the D2O solution, the NMR spectral change suggests that a rapid exchange occurs between the chair form and another conformer. It is proposed that the conformation of ^b1^b coordinated to [SiW11CoⅡO39]6- in DMSO-d6 is close to a twist form.

Solution-Processed Inorganic Thin Film Transistors Fabricated from Butylamine-Capped Indium-Doped Zinc Oxide Nanocrystals

  • Pham, Hien Thu;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.494-500
    • /
    • 2014
  • Indium-doped zinc oxide nanocrystals (IZO NCs), capped with stearic acid (SA) of different sizes, were synthesized using a hot injection method in a noncoordinating solvent 1-octadecene (ODE). The ligand exchange process was employed to modify the surface of IZO NCs by replacing the longer-chain ligand of stearic acid with the shorter-chain ligand of butylamine (BA). It should be noted that the ligand-exchange percentage was observed to be 75%. The change of particle size, morphology, and crystal structures were obtained using a field emission scanning electron microscope (FE-SEM) and X-ray diffraction pattern results. In our study, the 5 nm and 10 nm IZO NCs capped with stearic acid (SA-IZO) were ligand-exchanged with butylamine (BA), and were then spin-coated on a thermal oxide ($SiO_2$) gate insulator to fabricate a thin film transistor (TFT) device. The films were then annealed at various temperatures: $350^{\circ}C$, $400^{\circ}C$, $500^{\circ}C$, and $600^{\circ}C$. All samples showed semiconducting behavior and exhibited n-channel TFT. Curing temperature dependent on mobility was observed. Interestingly, mobility decreases with the increasing size of NCs from 5 to 10 nm. Miller-Abrahams hopping formalism was employed to explain the hopping mechanism insight our IZO NC films. By focusing on the effect of size, different curing temperatures, electron coupling, tunneling rate, and inter-NC separation, we found that the decrease in electron mobility for larger NCs was due to smaller electronic coupling.

Synthesis and Chromatographic Characteristics of Multidentate Ligand-Boned Silica Stationary Phases

  • Li, Rong;Wang, Yan;Chen, Guo-Liang;Shi, Mei;Wang, Xiao-Gang;Zheng, Jian-Bin
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2201-2206
    • /
    • 2010
  • To improve the separation property and stability of metal chelate Cu(II) column, three new kinds of multidentate aminocarboxy silica columns with cation-exchange properties were synthesized using glutamic acid (Glu), glutamic acidbromoacetic acid (Glu-BAA), glutamic acid-bromosuccinic acid (Glu-BSUA) as ligands and silica gel as matrix. The standard proteins were separated with prepared chromatographic columns. The stationary phases exhibited the metal chelate property after fixing copper ion (II) on the synthesized multidentate ligand silica columns. The binding capacity of immobilized metal ion was related with the dentate number of multidentate ligands. Chromatographic behavior of proteins and the leakage of immobilized metal ion on multidentate chelate Cu(II) columns were affected by the dentate number of multidentate ligands and competitive elution system directly. The results showed that quinquedentate Glu-BSUA-Cu(II) column exhibited better chromatographic property and stability as compared with tridentate Glu-Cu(II) column, tetradentate Glu-BAA-Cu(II) column and commonly used IDA-Cu(II) column.

Study on the Adsorption Behavior of FeS in Anaerobic Conditions (혐기성 조건에서 FeS의 흡착 거동 연구)

  • 김정배
    • Journal of Environmental Science International
    • /
    • v.6 no.5
    • /
    • pp.505-512
    • /
    • 1997
  • The Interfacial characteristics between various heavy metals and hydrous FeS were investigated. Heavy metals which have lower sulfide solubilities than FeS undergoes the lecttice exchange reaction when these metal tons contact FeS In the aqueous phase. For heavy metals which have higher suede solubilities than FeS, these metal ions adsorb on the surface of FeS. Such characteristic reactions were interpreted by the soled solution formation theory. The presence of ligand such as EDTA reduced largely metal removal efficiency due to formation of metal-ligand complex In the solution. In an attempt to elucidate the Interfacial characteristics, zeta potential of the hydrous FeS In the absence and In the presence of various metal loons were measured and analyzed.

  • PDF

Isotropic NMR Shifts in Some Pyridine-Type Ligands Complexed with Paramagnetic Undecatungstocobalto(Ⅱ)silicate and Undecatungstonickelo(Ⅱ) silicate Anions. Identifications of Dumbbell-Shaped 4,$4^{\prime}$-Bipyridyl Complexes

  • Moonhee Ko;Gyung Ihm Rhyu;Hyunsoo So
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.500-506
    • /
    • 1993
  • $^1H$ and $^{13}C$ NMR spectra for pyridine, ${\beta}$-and ${\gamma}$-picoline, pyrazine, and 4,4'-bipyridyl complexed with paramagnetic undecatungstocobalto(II)silicate and undecatungstonickelo(II)silicate anions are reported. For these complexes the ligand exchange is slow on the NMR time scale and the pure resonance lines have been observed at room temperature. The isotropic shifts in nickel complexes can be interpreted in terms of contact shifts by ${\sigma}$-electron delocalization. Both contact and pseudocontact shifts contribute to the isotropic shifts in cobalt complexes. The contact shifts, which are obtained by subtracting the pseudocontact shifts from the isotropic shifts, require both ${\sigma}$-and ${\pi}$-electron delocalization from the cobalt ion. Slow ligand exchange has also allowed us to identify the species formed when bidentate ligands react with the heteropolyanions. Pyrazine forms a 1 : 1 complex, while 4,4'-bipyridyl forms both 1 : 1 and dumbbell-shaped 1 : 2 complexes.

Designing a nanocrystal-based temperature and strain multi-sensor with one-step inkjet printing

  • Bang, Junsung;Ahn, Junhyuk;Oh, Soong Ju
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.218-222
    • /
    • 2021
  • Wearable multi-sensors based on nanocrystals have attracted significant attention, and studies on patterning technology to implement such multi-sensors are underway. Conventional patterning processes may affect material properties based on high temperatures and harsh chemical conditions. In this study, we developed an inkjet printing technique that can overcome these drawbacks through the application of patterning processes at room temperature and atmospheric pressure. Nanocrystal-based ink is used to adjust properties efficiently. Additionally, the viscosity and surface tension of the solvents are investigated and optimized to increase patterning performance. In the patterning process, the electrical, electrothermal, and electromechanical properties of the nanocrystal pattern are controlled by the ligand exchange process. Experimental results demonstrate that a multi-sensor with a temperature coefficient of resistance of 3.82 × 10-3 K-1 and gauge factor of 30.6 can be successfully fabricated using one-step inkjet printing.