• Title/Summary/Keyword: Life safety requirements

Search Result 164, Processing Time 0.029 seconds

On a Method to Analyze and Verify the Functional Safety of ISO 26262 Based on Systems Engineering Framework (기능안전규격 ISO 26262의 효과적 구현을 위한 시스템공학 기반 요구사항 분석/검증 방법)

  • Lim, Gwan-Taik;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.3
    • /
    • pp.61-69
    • /
    • 2013
  • According to ISO 26262 (the international standard on functional safety for automotive industry), the functional safety should be considered during the whole automotive systems life cycle from the design phase throughout the production phase. In order to satisfy the standard, the automotive and related industry needs to take appropriate actions while carrying out a variety of development activities. This paper presents an approach to coping with the standard. Analyzing the standard indicates that the safety issues of the automotive systems should be handled with a system's view whereas the conventional approach to solving the issues has been practiced with focus on the component's level. The aforementioned system's view implies that the functional safety shall be incorporated in the system design from both the system's life-cycle view and the hierarchical view for the structure. In light of this, the systems engineering framework can be quite appropriate in the functional safety development and thus has been taken in this paper as a problem solving approach. Of various design issues, the analysis and verification of the safety requirements for functional safety is a key study subject of the paper. Note, in particular, that the conventional FMEA (failure mode effects analysis) and FTA (fault tree analysis) methods seem to be partly relying on the insufficient experience and knowledge of the engineers. To improve this, a systematic method is studied here and the result is applied in the design of an ABS braking system as a case study.

The Issues and Requirements of the Establishment of Regulation and Standard for Drone Safety (드론 안전성 관련 법 제도 및 표준 수립을 위한 이슈와 요구 분석)

  • Choi, Bo-yoon;Lee, Byong-gul
    • Journal of Internet Computing and Services
    • /
    • v.22 no.1
    • /
    • pp.79-88
    • /
    • 2021
  • As drone industry increase with the advent of the 4th industrial revolution, yet ensured the safety of a drone crashing and incurring accidents which may result in significant damage to human life and assets. Thus, the authentication of drone safety is very urgent. For this reason, many countries are in need of institutional improvement in the aspect of authentication/legal systems by considering the importance of safety for drone. In this study, the regulations, research, and standards concerning drone safety are compared and analyzed. The analysis results can be used for improving the regulations of drone safety and standardization. The study can be contributed to invigorate drone industry by ensuring drone safety.

Expected Damage Analysis of Risk Exposure Object by Violation Rate of Safety Distance in Explosion of Ground Type Magazine (지상형 탄약고 폭발 시 안전거리 위반율에 따른 위험노출대상의 피해 수준 분석 연구)

  • Ham, Tae Yuun;Lee, Jae Joon
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.4
    • /
    • pp.92-100
    • /
    • 2022
  • Of the Korean military's 3,959 ammunition depots, 1,007 - more than 25% - violate safety requirements for distance and equipment. There is a risk of explosion in old depots that are vulnerable to various interior and exterior accidents. This paper examines 10 scenarios, with varying values for ammunition amount and safety distance. The study calculated the overpressure that can be applied to risk-exposure objects, based on the safety distance; expected damage was predicted using constructed spatial information from 3D explosion simulations. The simulations confirmed that explosion overpressure increased the most when the safety distance violation rate increased from 80% to 90%. It also confirmed that secondary damage such as fire and explosion can cause casualties and property damage when the violation rate is 60% or higher. The results show that building collapse becomes a risk with a violation rate of 70% or higher. We conclude that taking ammunition depot safety distance violation into account when planning military facilities and their land utilization could better protect life and property.

Analysis of Residual Organic Solvent in Environmentally-friendly Farming Materials with Headspace Method (Headspace 법을 사용한 유기농업자재 중 잔류 유기용매 분석)

  • Choi, Geun Hyoung;Kong, Seung-Heon;Park, Byung-Jun;Moon, Byeong-Cheol;Kim, Jin-Hyo
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.2
    • /
    • pp.128-132
    • /
    • 2016
  • Volatile organic solvents are used to extract the bioactive materials from raw materials for environmentally-friendly farming materials (EFFM), but the solvent should not remain in EFFM for the safety reasons. Thus qualitative and quantitative analysis method for the solvents using Headspace-GC were evaluated. Water content depleted the detection ratio of hydrophilic solvents and disturbing the hydrophilic interaction with solvents by DMSO might be helped to increase the detection ratio (up to 715%). Surfactant concentration affected to the detection ratio (68.5-179.1%) while surfactant type was not deeply involved the solvent detection. On the other hand, matrix-matched calibration method was accepted the minimum requirements for the quantitative analysis of the solvents in EFFM.

Advanced Optimization of Reliability Based on Cost Factor and Deploying On-Line Safety Instrumented System Supporting Tool (비용 요소에 근거한 신뢰도 최적화 및 On-Line SIS 지원 도구 연구)

  • Lulu, Addis;Park, Myeongnam;Kim, Hyunseung;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.2
    • /
    • pp.32-40
    • /
    • 2017
  • Safety Instrumented Systems (SIS) have wide application area. They are of vital importance at process plants to detect the onset of hazardous events, for instance, a release of some hazardous material, and for mitigating their consequences to humans, material assets, and the environment. The integrated safety systems, where electrical, electronic, and/or programmable electronic (E/E/PE) devices interact with mechanical, pneumatic, and hydraulic systems are governed by international safety standards like IEC 61508. IEC 61508 organises its requirements according to a Safety Life Cycle (SLC). Fulfilling these requirements following the SLC can be complex without the aid of SIS supporting tools. This paper presents simple SIS support tool which can greatly help the user to implement the design phase of the safety lifecycle. This tool is modelled in the form of Android application which can be integrated with a Web-based data reading and modifying system. This tool can reduce the computation time spent on the design phase of the SLC and reduce the possible errors which can arise in the process. In addition, this paper presents an optimization approach to SISs based on cost measures. The multi-objective genetic algorithm has been used for the optimization to search for the best combinations of solutions without enumeration of all the solution space.

Development of a RBI Procedure and Implementation of a Software Based on API Code (I) - Qualitative Approach (API기준에 근거한 RBI 절차 개발 및 소프트웨어의 구현 (I) 정성적 접근법)

  • 심상훈;송정수;김지윤;윤기봉
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.3
    • /
    • pp.66-72
    • /
    • 2002
  • During the last ten years, effort has been made for reducing maintenance cost for aged equipments and ensuring safety, efficiency and profitability of petrochemical and refinery plants. Hence, it was required to develop advanced methods which meet this need. RBI(Risk Based Inspection) methodology is one of the most promising technology satisfying the requirements in the field of integrity management. In this study, a qualitative assessment algorithm for RBI based on the API 581 code was reconstructed for developing an RBI software. The user-friendly realRBI software is developed with a module for evaluating qualitative risk category using the potential consequence factor and the likelihood factor.

DEVELOPMENT OF NUCLEAR ENERGY AND RADIATION TEXTBOOKS FOR ELEMENTARY, MIDDLE, AND HIGH SCHOOL STUDENTS

  • Han, Eun Ok;Kim, Jae Rok;Choi, Yoon Seok;Lochhead, James
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.3
    • /
    • pp.132-146
    • /
    • 2015
  • To develop tailored elementary, middle, and high school textbooks suitable for understanding the nuclear energy and radiation, quantitative and qualitative research was carried out in parallel, which included nine steps to ensure the validity of content and structure. The elementary, middle, and high school students wanted to acquire information used in their daily lives, including the definition of nuclear energy and radiation, principles and status of nuclear power generation, and information about irradiated food, medical radiation, and radiation in life. In the evaluation of the effects of textbook contents according to the educational requirements of each school level, high suitability frequencies (>80%) were shown for the human character, education goals, curriculum goals, evaluation method, and education time. At some levels, the high suitability frequencies (>70%) were shown for the education grade, education type, and textbook type.

Rolling Stock Fire Engineering aspect of System Engineering (System Engineering 측면에서 전동차 화재기술관리)

  • Chang, Jung-Hoon;Kang, Chan-Yong
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.163-168
    • /
    • 2005
  • In case of rolling stock, SEMS is generally applied in the advanced countries, but is start stage in our country. SEMS is defined the system engineering management system in order to achieve the optimized train performance among the several client requirements aspect of technical engineering management during the design life cycle. And the fire engineering activities in hong kong EMU project are introduced aspect of SEMS in this paper. The fire engineering at rolling stock in view of SEMS controls to apply the satisfied interior material by the fire safety standards (regulation of the commute urban subway safety guideline by the MOCT, BS 6853, NFPA 130, NF F 16-101) and to minimize the fire load in order that passengers egress safe from the fired rolling stock. The rolling stock in the advanced countries is designed to stand for 15-20 minutes in considering the rolling stock to be fired in tunnel. For passenger fire safety, the passenger evacuation provision and progress is set up.

  • PDF

Atmospheric Corrosion of Rolling Stock Structures (철도차량 구조물의 대기부식 특성)

  • Chang Se-Ky;Kim Yong-Ki;Oh Chang-Rok;Goo Byeong-Choon
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.663-667
    • /
    • 2004
  • Underframes of rolling stock structure are made of hot rolled steel of SS400 or SM490A. While these underframe steels are designed to satisfy the mechanical requirements, their corrosion behavior also should taken into account. Underframes are coated to prevent corrosion, but they are often defected by external factors to result in local corrosion which may cause the weakness of mechanical strength. Thus, the corrosion of underframe steels was examined through atmospheric corrosion test to estimate service life and safety.

  • PDF

Performance-based seismic analysis and design of code-exceeding tall buildings in Mainland China

  • Jiang, Huanjun;Lu, Xilin;Zhu, Jiejiang
    • Structural Engineering and Mechanics
    • /
    • v.43 no.4
    • /
    • pp.545-560
    • /
    • 2012
  • Design codes provide the minimum requirements for the design of code-compliant structures to ensure the safety of the life and property. As for code-exceeding buildings, the requirements for design are not sufficient and the approval of such structures is vague. In mainland China in recent years, a large number of code-exceeding tall buildings, whether their heights exceed the limit for the respective structure type or the extent of irregularity is violated, have been constructed. Performance-based seismic design (PBSD) approach has been highly recommended and become necessary to demonstrate the performance of code-exceeding tall buildings at least equivalent to code intent of safety. This paper proposes the general methodologies of performance-based seismic analysis and design of code-exceeding tall buildings in Mainland China. The PBSD approach proposed here includes selection of performance objectives, determination of design philosophy, establishment of design criteria for structural components and systems consistent with the desirable and transparent performance objectives, and seismic performance analysis and evaluation through extensive numerical analysis or further experimental study if necessary. The seismic analysis and design of 101-story Shanghai World Financial Center Tower is introduced as a typical engineering example where the PBSD approach is followed. The example demonstrates that the PBSD approach is an appropriate way to control efficiently the seismic damage on the structure and ensure the predictable and safe performance.