• 제목/요약/키워드: Life degradation

검색결과 1,408건 처리시간 0.028초

In situ ruminal degradation characteristics of dry matter and crude protein from dried corn, high-protein corn, and wheat distillers grains

  • Lee, Y.H.;Ahmadi, F.;Choi, D.Y.;Kwak, W.S.
    • Journal of Animal Science and Technology
    • /
    • 제58권9호
    • /
    • pp.33.1-33.7
    • /
    • 2016
  • Background: The continuing growth of the ethanol industry has generated large amounts of various distillers grains co-products. These are characterized by a wide variation in chemical composition and ruminal degradability. Therefore, their precise formulation in the ruminant diet requires the systematic evaluation of their degradation profiles in the rumen. Methods: Three distillers grains plus soluble co-products (DDGS) namely, corn DDGS, high-protein corn DDGS (HP-DDGS), and wheat DDGS, were subjected to an in situ trial to determine the degradation kinetics of the dry matter (DM) and crude protein (CP). Soybean meal (SBM), a feed with highly degradable protein in the rumen, was included as the fourth feed. The four feeds were incubated in duplicate at each time point in the rumen of three ruminally cannulated Hanwoo cattle for 1, 2, 4, 6, 8, 12, 24, and 48 h. Results: Wheat DDGS had the highest filterable and soluble A fraction of its DM (37.2 %), but the lowest degradable B (49.5 %; P < 0.001) and an undegradable C fraction (13.3 %; P < 0.001). The filterable and soluble A fraction of CP was greatest with wheat DDGS, intermediate with corn DDGS, and lowest with HP-DDGS and SBM; however, the undegradable C fraction of CP was the greatest with HP-DDGS (41.2 %), intermediate with corn DDGS (2.7 %), and lowest with wheat DDGS and SMB (average 4.3 %). The degradation rate of degradable B fraction ($%\;h^{-1}$) was ranked from highest to lowest as follows for 1) DM: SBM (13.3), wheat DDGS (9.1), and corn DDGS and HP-DDGS (average 5.2); 2) CP: SBM (17.6), wheat DDGS (11.6), and corn DDGS and HP-DDGS (average 4.4). The in situ effective degradability of CP, assuming a passage rate of $0.06h^{-1}$, was the highest (P < 0.001) for SBM (73.9 %) and wheat DDGS (71.2 %), intermediate for corn DDGS (42.5 %), and the lowest for HP-DDGS (28.6 %), which suggests that corn DDGS and HP-DDGS are a good source of undegraded intake protein for ruminants. Conclusions: This study provided a comparative estimate of ruminal DM and CP degradation characteristics for three DDGS co-products and SBM, which might be useful for their inclusion in the diet according to the ruminally undegraded to degraded intake protein ratio.

Biosynthesis and Control of Keratinase in Recalcitrant Feather-Degrading Bacillus megaterium F7-1

  • Jeong, Jin-Ha;Lee, Na-Ri;Jeon, Young-Dong;Kim, Jeong-Do;Park, Ki-Hyun;Park, Geun-Tae;Son, Hong-Joo
    • 한국환경과학회지
    • /
    • 제19권9호
    • /
    • pp.1077-1082
    • /
    • 2010
  • This study was performed to investigate the nutritional conditions controlling keratinase activity in Bacillus megaterium F7-1. B. megaterium F7-1 produced keratinase using chicken feather as a sole source of carbon, nitrogen and sulfur. Addition of the feather medium with glucose enhanced keratinase production (68.9 U/ml), compared to control without glucose (63.2 U/ml). The synthesis of keratinase was repressed by addition of $NH_4Cl$ in B. megaterium F7-1. The highest keratinase production (70.9 U/ml) was obtained with the feather medium containing glucose and $MgSO_4{\cdot}7H_2O$. Keratinase was produced in the absence of feather (4.9 U/ml), indicating its constitutive synthesis. Feather degradation resulted in free SH group formation. B. megaterium F7-1 effectively degraded chicken feather meal (86%), whereas duck feather, human nail, human hair and sheep wool displayed relatively low degradation rates (8-34%).

Improving Endoglucanase Activity by Adding the Carbohydrate-Binding Module from Corticium rolfsii

  • Tang, Zizhong;Chen, Hui;Chen, Lijiao;Liu, San;Han, Xueyi;Wu, Qi
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권4호
    • /
    • pp.440-446
    • /
    • 2014
  • The carbohydrate-binding module (CBM) is an important domain of most cellulases that plays a key role in the hydrolysis of cellulose. The neutral endoglucanase (EG1) gene was reconstructed. A redesigned endoglucanase, named EG2, was constructed with a CBM containing a linker from Corticium rolfsii (GenBank Accession No. D49448). The redesigned EG genes were expressed in Escherichia coli, and their characteristics are discussed. Results showed that the degradation of cellulose by EG2 was about double that by EG1. The specific activities of EG1 and EG2 were tested under optimal conditions, and EG2 had higher activity ($169.1{\pm}2.74$ U/mg) toward CMC-Na than did EG1 ($84.0{\pm}1.98$) in the process of cellulose degradation. The optimal pH and temperature, pH stability, and heat stability of EG1 and EG2 were similar. Results indicated that the CBM plays an essential role in the hydrolysis of cellulose. We can improve EG's catalytic power by adding the CBM from Corticium rolfsii.

CNT소재를 포함하는 복합소재의 수명예측을 위해 가속열화 시험 및 머신러닝 기법을 이용한 수명예측 비교 연구 (A Comparative Study of Life Prediction using Accelerated Aging Tests and Machine Learning Techniques to Predict the Life of Composite Materials including CNT Materials)

  • 김성동;김남호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.456-458
    • /
    • 2022
  • 국제해사기구의 환경규제로 조선소에서는 선박의 효율향상을 위한 다양한 연구를 추진하고 있으며, 선박의 무게절감을 위한 노력이 진행 중이다. 최근, CNT소재를 포함하는 복합소재는 일반 철판 소재 대비 40% 이상 무게절감이 가능한 장점이 있어, 선박의 클램프나 도어스킨으로 대체사용이 가능한 장점이 있다. 이에, 본 연구에서는 CNT소재를 포함하는 복합소재의 수명예측을 위해, 가속열화시험 방법과 머신러닝 기법을 이용한 수명예측을 통해 결과를 비교하였다. 가속열화시험은 아레니우스 모델식을 이용하였고, 머신러닝 기법은 회기분석 알고리즘을 이용하여 수명을 예측하였다.

  • PDF

전기비저항법을 이용한 재료열화 평가 (Evaluation of Material Degradation Using Electrical Resistivity Method)

  • 석창성;김동중;배봉국
    • 대한기계학회논문집A
    • /
    • 제24권12호
    • /
    • pp.2995-3002
    • /
    • 2000
  • The remaining life estimation for the aged components in power plants as well as chemical plants are very important beacuse mechanical properties of the components are degraded with time of service exposure in high temperature. Since it is difficult to take specimens from the operating components to evaluate mechanical properties of components nondestructive techniques are needed to estimate the degradation. In this study, test materials with 4 different degradation levels were prepared by isothermal aging heat treatment at 630$\^{C}$. And the DC potential drop method and destructive methods such as tensile, K(sub)IC and hardness tests were used in order to evaluate the degradation of 1-Cr-1Mo-0.25V steels. The objective of this study is to investigate the possibility of the application of DCPD method to estimated the material degradation, and to analyse the relationship between the electrical relationship between the electrical resistivity and the degree material degradation.

자동차 엔진룸용 전장품 유무연 솔더 접합부의 열화특성 (Degradation Characteristics of Eutectic and Pb-free Solder Joint of Electronics mounted for Automotive Engine)

  • 김아영;홍원식
    • Journal of Welding and Joining
    • /
    • 제32권3호
    • /
    • pp.74-80
    • /
    • 2014
  • Due to environmental regulations (RoHS, WEEE and ELV) of the European Union, electronics and automotive electronics have to eliminate toxic substance from their devices and system. Especially, reliability issue of lead-free solder joint is increasing in car electronics due to ELV (End-of-Life Vehicle) banning from 2016. We have prepared engine control unit (ECU) modules soldered with Sn-40Pb and Sn-3.0Ag-0.5Cu (SAC305) solders, respectively. Degradation characteristics of solder joint strength were compared with various conditions of automobile environment such as cabin and engine room. Thermal cycle test (TC, $-40^{\circ}C$ ~ ($85^{\circ}C$ and $125^{\circ}C$), 1500 cycles) were conducted with automotive company standard. To compare shear strength degradation rate with eutectic and Pb-free solder alloy, we measured shear strength of chip components and its size from cabin and engine ECU modules. Based on the TC test results, finally, we have known the difference of degradation level with solder alloys and use environmental conditions. Solder joints degradation rate of engine room ECU is superior to cabin ECU due to large CTE (coefficient of thermal expansion) mismatch in field condition. Degradation rate of engine room ECU is 50~60% larger than cabin room electronics.

완충 수용액중 pH, 온도, 이온강도 및 금속이온이 Aucubin의 분해에 미치는 영향 (Influence of pH, Temperature, Ionic Strength and Metal Ions on the Degradation of an Iridoid Glucoside, Aucubin, in Buffered Aqueous Solutions)

  • 전인구;조영미
    • Journal of Pharmaceutical Investigation
    • /
    • 제25권3호
    • /
    • pp.239-247
    • /
    • 1995
  • The physico-chemical stability of aucubin, a hepatoprotective iridoid glucoside, in buffered aqueous solutions was studied using a stability-indicating reversed-phase high performance liquid chromatography. The degradation of aucubin followed the pseudo-first-order kinetics. In strong acidic regions, aucubin was rapidly degraded by the specific acid catalysis, forming dark brown precipitates. From the rate-pH profiles, it was found that aucubin was most stable at the pH of about 10. From the temperature dependence of degradation, activation energies for aucubin at pH 2.1 and 4.9 were calculated to be 22.0 and 24.3 kcal/mole, respectively. The shelf-life $(t_{90%})$ for aucubin at pH 9.07 and $20^{\circ}C$ was predicted to be about 603 days. A higher ionic strength accelerated the degradation of aucubin at pH 4.01. The effect of metal ions on the degradation rate of aucubin at pH 7.16 was in the rank order of $Cu^{2+}\;>\;Fe^{3+}\;>\;Co^{2+}\;>\;Fe^{2+}\;>\;Mg^{2+}$. On the other hand, $Mn^{2+}\;and\;Ba^{2+}$ slowed the degradation rate.

  • PDF

Effects of L-glutamine supplementation on degradation rate and rumen fermentation characteristics in vitro

  • Suh, Jung-Keun;Nejad, Jalil Ghassemi;Lee, Yoon-Seok;Kong, Hong-Sik;Lee, Jae-Sung;Lee, Hong-Gu
    • Animal Bioscience
    • /
    • 제35권3호
    • /
    • pp.422-433
    • /
    • 2022
  • Objective: Two follow-up studies (exp. 1 and 2) were conducted to determine the effects of L-glutamine (L-Gln) supplementation on degradation and rumen fermentation characteristics in vitro. Methods: First, rumen liquor from three cannulated cows was used to test L-Gln (50 mM) degradation rate and ammonia-N production at 6, 12, 24, 36, and 48 h after incubation (exp. 1). Second, rumen liquor from two cannulated steers was used to assess the effects of five levels of L-Gln including 0% (control), 0.5%, 1%, 2%, and 3% at 0, 3, 6, 12, 24, 36, and 48 h after incubation on fermentation characteristics, gas production, and degradability of nutrients (exp. 2). Results: In exp. 1, L-Gln degradation rate and ammonia-N concentrations increased over time (p<0.001). In exp. 2, pH was reduced significantly as incubation time elapsed (p<0.001). Total gas production tended to increase in all groups as incubation time increased. Acetate and propionate tended to increase by increasing glutamine (Gln) levels, whereas levels of total volatile fatty acids (VFAs) were the highest in 0.5% and 3% Gln groups (p<0.001). The branched-chain VFA showed both linear and quadratic effects showing the lowest values in the 1% Gln group particularly after 6 h incubation (p<0.001). L-Gln increased crude protein degradability (p<0.001), showing the highest degradability in the 0.5% Gln group regardless of incubation time (p<0.05). Degradability of acid detergent fiber and neutral detergent fiber showed a similar pattern showing the highest values in 0.5% Gln group (p<0.10). Conclusion: Although L-Gln showed no toxicity when it was supplemented at high dosages (2% to 3% of DM), 0.5% L-Gln demonstrated the positive effects on main factors including VFAs production in-vitro. The results of this study need to be verified in further in-vivo study.

Quantitative and qualitative analysis of autophagy flux using imaging

  • Kim, Suree;Choi, Soohee;Kang, Dongmin
    • BMB Reports
    • /
    • 제53권5호
    • /
    • pp.241-247
    • /
    • 2020
  • As an intracellular degradation system, autophagy is an essential and defensive cellular program required for cell survival and cellular metabolic homeostasis in response to various stresses, such as nutrient deprivation and the accumulation of damaged organelles. In general, autophagy flux consists of four steps: (1) initiation (formation of phagophore), (2) maturation and completion of autophagosome, (3) fusion of autophagosomes with lysosomes (formation of autolysosome), and (4) degradation of intravesicular components within autolysosomes. The number of genes and reagents that modulate autophagy is increasing. Investigation of their effect on autophagy flux is critical to understanding the roles of autophagy in many physiological and pathological processes. In this review, we summarize and discuss ways to analyze autophagy flux quantitatively and qualitatively with the use of imaging tools. The suggested imaging method can help estimate whether each modulator is an inhibitor or a promoter of autophagy and elucidate the mode of action of specific genes and reagents on autophagy processes.

Three Separate Pathways for the Initial Oxidation of Limonene, Biphenyl, and Phenol by Rhodococcus sp. Strain T104

  • Kim, Dockyu;Park, Min-Jung;Koh, Sung-Cheol;So, Jae-Seong;Kim, Eungbin
    • Journal of Microbiology
    • /
    • 제40권1호
    • /
    • pp.86-89
    • /
    • 2002
  • Rhodococcus sp. strain T104, which is able to grow on either biphenyl or limonene, was found to utilize phenol as sole carbon and energy sources. Furthermore, T104 was positively identified to possess three separate pathways for the degradation of limonene, phenol, and biphenyl. The fact that biphenyl and limonene induced almost the same amount of catechol 1,2-dioxygenase activity indicates that limonene can induce both upper and lower pathways for biphenyl degradation by T104.