Three Separate Pathways for the Initial Oxidation of Limonene, Biphenyl, and Phenol by Rhodococcus sp. Strain T104

  • Kim, Dockyu (Department of Biology and Institute of Life Science and Biotechnology, Yonsei University) ;
  • Park, Min-Jung (Department of Biology and Institute of Life Science and Biotechnology, Yonsei University) ;
  • Koh, Sung-Cheol (Division of Civil and Enviornmental Engineering, Korea Maritime University) ;
  • So, Jae-Seong (Department of Biological Engineering Center of Advanced Bioseparation Technology, Inha University) ;
  • Kim, Eungbin (Department of Biology and Institute of Life Science and Biotechnology, Yonsei University)
  • Published : 2002.03.01

Abstract

Rhodococcus sp. strain T104, which is able to grow on either biphenyl or limonene, was found to utilize phenol as sole carbon and energy sources. Furthermore, T104 was positively identified to possess three separate pathways for the degradation of limonene, phenol, and biphenyl. The fact that biphenyl and limonene induced almost the same amount of catechol 1,2-dioxygenase activity indicates that limonene can induce both upper and lower pathways for biphenyl degradation by T104.

Keywords

References

  1. Appl. Environ. Microbiol. v.53 Extensive degradation of aroclors and environmentally transformed polychlorinated biphenyls by Alcaligenes eutrophus H850 Bedard, D.L;R.E. Wagner;M.J. Brennan;M.L. Haberl;J.F. Brown, Jr
  2. Anal. Biochem v.72 A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding Bradford, M.M https://doi.org/10.1016/0003-2697(76)90527-3
  3. Science v.236 Polychlorinated biphenyl dechlorination in aquatic sediments Brown, J.F;D.L. Bedard;M.J. Brennan;J.C. Carnahan;H. Feng;R.E. Wagner
  4. Fenaroli's Handbook of Flavour Ingredients(3rd ed) Burdock, G.A
  5. Manual of methods for general bacteriology Gene mutation Carlton, B.C;B.J. Brown;P. Gerhardt(ed);R.G.E. Murray(ed);R.N. Costilow(ed);E.W. Nester(ed);W.A. Wood(ed);N.R. Krieg(ed);G.B. Phillips(eds)
  6. Biochem J. v.174 Chemical structure and biodegradability of halogenated aromatic compounds: substituted effects on 1,2-dioxygenation of catechol Dorn, E;H.J. Knackmuss https://doi.org/10.1042/bj1740085
  7. J. Bacteriol. v.168 Characterization of a plasmid-specified pathway for catabolism of isopropylbenzene in Pseudomonas putida RE204 Eaton, R.W;K.N. Timmis https://doi.org/10.1128/jb.168.1.123-131.1986
  8. Science v.222 Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo Ensley, B.D;B.J. Ratzkin;T.D. Osslund;M.J. Simon;L.P. Wackett;D.T. Gibson https://doi.org/10.1126/science.6353574
  9. Curr. Opi. Biotechnol v.6 Strategies for the improvement of aerobic metabolism of polychlorinated biphenyls Focht,D.D https://doi.org/10.1016/0958-1669(95)80057-3
  10. Appl. Environ. Microbiol. v.50 Kinetics of biphenyl and polychlorinated biphenyl metabolism in soil Focht, D.D;W. Brunner
  11. Biodegradation v.5 Molecular genetics and evolutionary relationship of PCB-degrading bacteria Furukawa, K https://doi.org/10.1007/BF00696466
  12. Science v.259 In situ stimulation of aerobic PCB biodegradation in Hudson River sediments Harkness, M.R;J.B. McDermott;D.A. Abramowicz;J.J. Salvo;W.P. Flanagan;M.L. Stephens;F.J. Mondello;R.J. May;J.H. Lobos;K.M. Carroll;A.A. Bracco;K.M. Fish;G.L. Warner;P.R. Wilson;D.K. Dietrich;D.T. Lin;C.B. Morgan;W.L. Gately https://doi.org/10.1126/science.8424172
  13. Biodegradation v.8 Terpeneutilizing isolates and their relevance to enhanced biotranformation of PCBs in soil Hernandez, B.S;S. Koh;M. Chial;D.D. Focht https://doi.org/10.1023/A:1008255218432
  14. Biotechnol. Bioprocess Eng v.6 Specific biodegradation of polychlorinated biphenyls (PCBs) facilitated by plant terpenoids Jung, K-J;E. Kim;J.-S.So;S-C.Koh https://doi.org/10.1007/BF02942252
  15. Appl. Microbiol. Biotechnol. v.35 Production of 4,5-dihydro- 4,5-dihydroxyphthalate from phthalate by a mutant strain of Pseudomonas testesteroni M4-1 Omori, T;M. Matsubara;S. Masuda;T. Kodama
  16. J. Microbiol. v.39 Toxic effects of catechol and 4-chlorobenzoates stresses on bacterial cells Park, S.-H;Y.-J. Ko;C.-K. Kim
  17. J. Microbiol. Biotechnol. v.9 Induction by carvone of polychlorinated biphenyl(PCB)-degradative pathway in Alcaligenes eutrophus H850 and its molecular monitoring Park, Y.I;J.S. So;S.C. Koh
  18. Science v.242 Reductive dechlorination of polychlorinated biphenyls by anaerobic microorganisms from sediments Quensen, J.F. III;J.M. Tiedje;S.A. Boyd https://doi.org/10.1126/science.242.4879.752
  19. Annu. Rev. Microbiol. v.52 Development of hybrid strains for the mineralization of chloroaromatics by patchwork assembly Reineke, W https://doi.org/10.1146/annurev.micro.52.1.287
  20. Biotechnol. Genet. Eng. Rev. v.12 The bioremediation of polychlorinated biphenyls (PCBs):problems and perspective Robinson, G.K;M.J. Lenn https://doi.org/10.1080/02648725.1994.10647911
  21. J. Gen. Microbiol. v.43 The aerobic pseudomonads: a taxonomic study Stainner, R.Y;N.J. Palleroni;M. Duodoroff https://doi.org/10.1099/00221287-43-2-159