DOI QR코드

DOI QR Code

Biosynthesis and Control of Keratinase in Recalcitrant Feather-Degrading Bacillus megaterium F7-1

  • Jeong, Jin-Ha (Department of Life Science and Environmental Biochemistry, Pusan National University) ;
  • Lee, Na-Ri (Department of Life Science and Environmental Biochemistry, Pusan National University) ;
  • Jeon, Young-Dong (Department of Life Science and Environmental Biochemistry, Pusan National University) ;
  • Kim, Jeong-Do (Department of Life Science and Environmental Biochemistry, Pusan National University) ;
  • Park, Ki-Hyun (Department of Life Science and Environmental Biochemistry, Pusan National University) ;
  • Park, Geun-Tae (Research and University-Industry Cooperation, Pusan National University) ;
  • Son, Hong-Joo (Department of Life Science and Environmental Biochemistry, Pusan National University)
  • Received : 2010.08.12
  • Accepted : 2010.09.08
  • Published : 2010.09.30

Abstract

This study was performed to investigate the nutritional conditions controlling keratinase activity in Bacillus megaterium F7-1. B. megaterium F7-1 produced keratinase using chicken feather as a sole source of carbon, nitrogen and sulfur. Addition of the feather medium with glucose enhanced keratinase production (68.9 U/ml), compared to control without glucose (63.2 U/ml). The synthesis of keratinase was repressed by addition of $NH_4Cl$ in B. megaterium F7-1. The highest keratinase production (70.9 U/ml) was obtained with the feather medium containing glucose and $MgSO_4{\cdot}7H_2O$. Keratinase was produced in the absence of feather (4.9 U/ml), indicating its constitutive synthesis. Feather degradation resulted in free SH group formation. B. megaterium F7-1 effectively degraded chicken feather meal (86%), whereas duck feather, human nail, human hair and sheep wool displayed relatively low degradation rates (8-34%).

Keywords

References

  1. Atalo, K., Gashe, B. A., 1993, Protease production by a thermophilic Bacillus species (P-001A) which degrades various of fibrous proteins, Biotechnol. Lett., 15, 1151-1156. https://doi.org/10.1007/BF00131207
  2. Bockle, B., Müller, R., 1997, Reduction of disulfide bonds by Streptomyces pactum during growth on chicken feathers, Appl. Environ. Microbiol., 63, 790-792.
  3. Bradford, M. M., 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Brandelli, A., Daroit, D. J., Riffel, A., 2010, Biochemical features of microbial keratinases and their production and applications, Appl. Microbiol. Biotechnol., 85,1735-1750. https://doi.org/10.1007/s00253-009-2398-5
  5. Bressollier, P., Letorneau, F., Urdaci, M., Verneuil, B., 1999, Purification and characterization of a keratinolytic serine proteinase from Streptomyces albidoflavus, Appl. Environ. Microbiol., 65, 2570-2576.
  6. Cheng, S. W., Hu, H. M., Shen, S. W., Takagi, H., Asano, M., Tasi, Y. C., 1995, Production and characterization of keratinase of a feather-degrading Bacillus licheniformis PWD-1, Biosci. Biotechnol. Biochem., 59, 2239-2243. https://doi.org/10.1271/bbb.59.2239
  7. Ellman, G. L., 1959, Tissue sulfhydryl groups, Arch. Biochem. Biophy., 82, 70-77. https://doi.org/10.1016/0003-9861(59)90090-6
  8. Fisher, S. H., Sonenshein, A. L., 1991, Control of carbon and nitrogen metabolism in Bacillus subtilis, Annu. Rev. Microbiol., 45, 107-135. https://doi.org/10.1146/annurev.mi.45.100191.000543
  9. Gioppo, N. M. da R., Moreira-Gasparin, F. G., Costa, A. M., Alexandrino, A. M., de Souza, C. G. M., Peralta. R. M., 2009, Influence of the carbon and nitrogen sources on keratinase production by Myrothecium verrucariain submerged and solid state cultures, J. Ind. Microbiol. Biotechnol., 36, 705-711. https://doi.org/10.1007/s10295-009-0540-0
  10. Haddar, H. O., Zaghloul, T. I., Saeed, H. M., 2009, Biodegradation of native feather keratin by Bacillus subtilis recombinant strains, Biodegradation, 20, 687-694. https://doi.org/10.1007/s10532-009-9256-0
  11. Ignatova, Z., Gousterova, A., Spassov, G., Nedkov, P., 1999, Isolation and partial characterization of extracellular keratinase from a wool degrading thermophilic actinomycete strain Thermoactinomyces candidus, Can. J. Microbiol., 45, 217-222. https://doi.org/10.1139/cjm-45-3-217
  12. Joshi, S. G., Tejashwini, M. M., Revati, N., Sridevi, R., Roma, D., 2007, Isolation, identification and characterization of a feather degrading bacterium, Int. J. Poult. Sci., 6, 689-693. https://doi.org/10.3923/ijps.2007.689.693
  13. Kumar, A. G., Swarnalatha, S., Gayathri, S., Nagesh, N., Sekaran, G., 2008, Characterization of an alkaline active-thiol forming extracellular serine keratinase by the newly isolated Bacillus pumilis, J. Appl. Microbiol., 104, 411-419.
  14. Kunert, J., Stransky, Z., 1988, Thiosulfate production from cysteine by the keratinophilic prokaryote Streptomyces fradiae, Arch. Microbiol., 150, 600-601. https://doi.org/10.1007/BF00408257
  15. Malviya, H. K., Rajak, R. C., Hasija, S. K., 1992, Synthesis and regulation of extracellular keratinase in three fungi isolated from the grounds of a gelatin factory, Jabalpur, India, Mycophathologia, 120, 1-4. https://doi.org/10.1007/BF00578494
  16. Noronha, E. F., de Lima, B. D., de Sa, C. M., Felix, C. R., 2002, Heterologous production of Aspergillus fumigatus keratinase in Pichia pastoris, World J. Microbiol. Biotechnol., 18, 563-568. https://doi.org/10.1023/A:1016341702908
  17. Onifade, A. A., Al-Sane, N. A., Al-Musallam, A. A., Al-Zarban, S., 1998, Potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources, Biores. Technol., 66, 1-11. https://doi.org/10.1016/S0960-8524(98)00033-9
  18. Park, G. T., Son, H. J., 2009, Keratinolytic activity of Bacillus megaterium F7-1, a feather-degrading mesophilic bacterium, Microbiol. Res., 164, 478-485. https://doi.org/10.1016/j.micres.2007.02.004
  19. Rao, M. B., Tanksale, A. M., Ghatge, M. S., Deshpande, V. V., 1998, Molecular and biotechnological aspects of microbial proteases, Microbiol. Mol. Biol. Rev., 62, 597-635.
  20. Riffel, A., Lucas, F., Heeb, P., Brandelli, A., 2003, Characterization of a new keratinolytic bacterium that completely degrades native feather keratin, Arch. Microbiol., 179, 258-265.
  21. Rozs, M., Manczinger, L., Vagvolgyi, Cs., Kevei, F., Hochkoeppler, A., Rodriguez, A. G. V., 2001, Fermentation characteristics and secretion of proteases of a new keratinolytic strain of Bacillus licheniformis, Biotechnol. Lett., 23, 1925-1929. https://doi.org/10.1023/A:1013746103442
  22. Sangali, S., Brandelli, A., 2000, Feather keratin hydrolysis by a Vibrio sp. strain kr2, J. Appl. Microbiol., 89, 735-743. https://doi.org/10.1046/j.1365-2672.2000.01173.x
  23. Singh, C. J., 1997, Characterization of an extracellular keratinase of Trichophyton simii and its role in keratin degradation, Mycopathologia, 137, 13-16. https://doi.org/10.1023/A:1006844201399
  24. Son, H. J., Kim, Y. G., Park, Y. K., 2004, Isolation and identification of feather-degrading bacteria for biotechnological applications of keratinaceous protein waste, J. Life Sci., 14, 229-234. https://doi.org/10.5352/JLS.2004.14.2.229
  25. Son, H. J., Park, H. C., Kim, H. S., Lee, C. Y., 2008, Nutritional regulation of keratinolytic activity in Bacillus pumilis, Biotechnol. Lett., 30, 461-465. https://doi.org/10.1007/s10529-007-9567-3
  26. Wawrzkiewicz, K., Lobarzewski, J., Wolski, T., 1987, Intracellular keratinase of Trichophyton gallinae, J. Med. Vet. Mycol., 25, 261-268. https://doi.org/10.1080/02681218780000601