This paper describes the design and implementation of the database which is used in Personal Life Log Media system. The database contains information about media that capture personal experiences and enables the user to retrieve the media in a user friendly ways. The implementation of the database design is done by managing video data, which captures user's personal experiences, with its spatial and temporal information. The database enables the user to retrieve the video by mentioning where and/or when the video has been taken.
본 연구는 대도시지역(서울, 대전, 부산, 광주)에서 판매되는 길거리 식품(김밥, 어묵, 순대)에 대한 미생물 모니터링 검사를 실시하여, 이들 제품에 대한 위생 안전성 확보를 위한 기초 자료를 제공하기 위해 진행되었다. 김밥의 총호기성균은 5.1~9.9 log CFU/g으로 검출되었으며, 여름철에 가장 높게 검출되었다. 호냉성균은 총호기성균과 유사한 패턴으로 검출되었으며, 여름철에 수거된 순대 7건에서 6.0~7.9 log CFU/g 수준으로 검출되었다. Total coliform은 53.6%의 검출률을 나타내었으며, 김밥의 70.8%에서 4.0 log CFU/g 이상 검출되었다. E. coli는 김밥과 순대에서 15건이 검출되었으며, 어묵에서는 검출되지 않았다. 식중독균중 S. aureus가 28건(7.8%)이 검출되었으며, C. perfringens는 12건(3.3%)이 검출되었다. 특히 김밥에서 S. aureus, C. perfringens가 각각 24건, 10건에서 검출되어 식중독 발생 가능성이 높은 것으로 판단되었다. 그리고 계절별로 보면 겨울에 비해 봄, 여름의 검출률이 높았으며, 지역별로 보면 부산지역에서 가장 높은 검출률을 보였다.
In this paper, make a study decision problem called an optimal release policies after testing a software system in development phase and transfer it to the user. In the course of correcting or modifying the software, finite failure non-homogeneous Poisson process model, presented and was proposed release policies of the life distribution, half-logistic and log-logistic distributions model which used to an area of reliability because of various shape and scale parameter. In this paper, discuss optimal software release policies which minimize a total average software cost of development and maintenance under the constraint of satisfying a software reliability requirement. In a numerical example, the parameter estimation using maximum likelihood estimation of failure time data make out, and software optimal release time was estimated.
Process mining aims at mining valuable information from process execution results (called "event logs"). Even though process mining techniques have proven to be a valuable tool, the mining results from real process logs are usually too complex to interpret. The main cause that leads to complex models is the diversity of process logs. To address this issue, this paper proposes a trace clustering approach that splits a process log into homogeneous subsets and applies existing process mining techniques to each subset. Based on log profiles from a process log, the approach uses existing clustering techniques to derive clusters. Our approach are implemented in ProM framework. To illustrate this, a real-life case study is also presented.
Journal of the Korean Data and Information Science Society
/
제26권1호
/
pp.271-280
/
2015
In this paper, the maximum likelihood estimators for parameters are derived under three step-stress accelerated life tests for Type-I hybrid censored data. The exponential distribution and the cumulative exposure model are considered based on the assumption that a log quadratic relationship exits between stress and the mean lifetime ${\theta}$. The test plan to search optimal stress change times minimizing the asymptotic variance of maximum likelihood estimators are presented. A numerical example to illustrate the proposed inferential procedures and some simulation results to investigate the sensitivity of the optimal stress change times by the guessed parameters are given.
Journal of the Korean Data and Information Science Society
/
제17권4호
/
pp.1375-1386
/
2006
In life testing, the lifetimes of test units under the usual conditions are so long that life testing at usual conditions is impractical. Testing units are subjected to conditions of high stress to yield informations quickly. In this paper, the inferences of parameters on the three step-stress accelerated life testing are studied. The two-parameter exponential distribution with a failure rate function that a log-quadratic function of stress and the tempered failure rate model are considered. We obtain the maximum likelihood estimators of the model parameters and their confidence regions. A numerical example will be given to illustrate the proposed inferential procedures.
As compared with VOD data, NOD article data has the following characteristics: it is created at any time, has a short life cycle, is selected as not one article but several articles by a user, and has high access locality in time. Because of these intrinsic features, user access patterns of NOD article data are different from those of VOD. Thus, building NOD system using the existing techniques of VOD system leads to poor performance. In this paper, we analysis the log file of a currently running electronic newspaper, show that the popularity distribution of NOD articles is different from Zipf distribution of VOD data, and suggest a new popularity model of NOD article data MS-Zipf(Multi-Selection Zipf) distribution and its approximate solution. Also we present a life cycle model of NOD article data, which shows changes of popularity over time. Using this life cycle model, we develop LLBF (Largest Life-cycle Based Frequency) prefetching algorithm and analysis he performance by simulation. The developed LLBF algorithm supports the similar level in hit-ratio to the other prefetching algorithms such as LRU(Least Recently Used) etc, while decreasing the number of data replacement in article prefetching and reducing the overhead of the prefetching in system performance. Using the accurate user access patterns of NOD article data, we could analysis correctly the performance of NOD server system and develop the efficient policies in the implementation of NOD server system.
본 논문은 최근 다양한 종류의 웨어러블 디바이스가 헬스케어 도메인에 급증하여 사용되고 있는 상황에서 최신 첨단 기술이 실제 메디컬 환경에서 개인의 질병예측이라는 관점을 바라본다. 사용자 참여형 웨어러블 디바이스를 통하여 임상 데이터와 유전자 데이터, 라이프 로그 데이터를 병합하여 데이터를 수집, 처리, 전송하는 과정을 걸쳐 딥뉴럴 네트워크의 환경에서 학습모델의 제시와 피드백 모델을 연결하는 과정을 제시한다. 이러한 첨단 의료 현장에서 일어나는 메디컬 IT의 임상시험 절차를 걸친 실제 현장의 경우 대사 증후군에 의한 특정 유전자가 질병에 미치는 영향을 측정과 더불어 임상 정보와 라이프 로그 데이터를 병합하여 서로 각기 다른 이종 데이터를 처리하면서 질병의 특이점을 확인하게 된다. 즉, 이종 데이터의 딥뉴럴 네트워크의 객관적 적합성과 확실성을 증빙하게 되고 이를 통한 실제 딥러닝 환경에서의 노이즈에 따른 성능 평가를 실시한다. 이를 통해 자동 인코더의 경우의 1,000 EPOCH당 변화하는 정확도와 예측치가 변수의 증가 값에 수차례 선형적으로 변화하는 현상을 증명하였다.
The present study was undertaken to establish the decision standard of builds for the insured by using the ratio of weight-for-height as build index. Materials being examined were the ratio of weight-for-height being calculated from the actually measured heights and weights of a total of 15,838 insured persons who were examined medically at Honam Medical Department of Dong Bang Life Insurance Company, Ltd. from June, 1979 to September, 1985. The ratio of weight-for-height is calculated by the following formula. The ratio of weight-for-height(%)=$\frac{weight(kg){\times}100}{\{height(cm)-100\}{\times}0.9(kg)$ The results were as follows: 1. The distribution of the ratio of weight. for-height of the 15,838 insureds follows Log normal distribution being skewed to the left(the direction of underweight). 2. The ratio of weight-for-height were Log transformed to lead to a sym metrical pattern of distribution in which statistical rules are known to be applied more exactly. Thereafter, the establishment of dicision standard of builds was undertaken by using the log of the ratio of weight-for-height as build index. Through all ages in male, the ratio of weight-for-height indicating the range of standard lives including slight overweighted and underweighted lives besides normal lives is 80-130%, and corresponds to $"M-2{\delta}"-"M+1.5{\delta}"$ and to $M{\pm}20%$ ; in female, 85-135%, and corresponds to $"M-2{\delta}"-"M+1.5{\delta}"$ and to $M{\pm}20%$. Through all ages in male, the ratio of weight-for-height indicating the initial level of super-overweighted and super-underweighted lives is 130-150% and 75-80%,and corresponds to $M+3{\delta}\;and\;M-3{\delta}$ and to M+40% and M-25% respectively;in female, 140-160% and 75-80%, and corresponds to $M+3{\delta}\;and\;M-3{\delta}$ and to M+40%-+50% and M-25% respectively. 3. Author's rating table model for builds(a table of weight per height) is proposed. On the table, the ratings for builds, i. e. standard, super-weighted and super-underweighted lives, are listed.
초연결사회에서 IoT 기반의 라이프로그 데이터는 사물인터넷 기술 전반에 활용되며 사용자의 요구사항을 반영한 맞춤형 서비스의 중요 요소로 자리 잡고 있다. 또한 사용자들은 소셜네트워크서비스를 활용하여 관심사 및 감정들을 쉽게 표현하면서 다양한 라이프로그 데이터가 축척되고 있다. 본 논문에서는 IoT 기반의 라이프로그 데이터를 활용한 지능형 캐릭터를 개발하여 사용자들의 감성을 체계적으로 파악하기 위해 정성적/정량적 데이터를 수집 및 분석한다. 이를 위해 사용자가 이용하는 소셜네트워크서비스를 통한 정성적 데이터와 웨어러블 디바이스를 통한 정량적 데이터를 수집한다. 수집한 데이터는 에스노그라피를 통한 페르소나와 비교하여 신뢰성을 검증한다. 추후에는 더 많은 사용자 라이프로그 데이터를 수집하여 데이터의 신뢰성을 확보하고 분석 과정에서 오차를 줄여 개인맞춤형 서비스를 제공할 수 있도록 지능형 캐릭터를 개발할 예정이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.