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AbstractAbstractAbstractAbstract

In life testing, the lifetimes of test units under the usual conditions are
so long that life testing at usual conditions is impractical. Testing units
are subjected to conditions of high stress to yield informations quickly. In
this paper, the inferences of parameters on the three step-stress
accelerated life testing are studied. The two-parameter exponential
distribution with a failure rate function that a log-quadratic function of
stress and the tempered failure rate model are considered. We obtain the
maximum likelihood estimators of the model parameters and their
confidence regions. A numerical example will be given to illustrate the
proposed inferential procedures.

KeywordsKeywordsKeywordsKeywords : Accelerated life test, Confidence region, Maximum
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1. Introduction1. Introduction1. Introduction1. Introduction

In many reliability studies, the life testing were made under environment

conditions. But for extremely reliable units, it is in general impossible to make life

testing at use stress because the lifetimes of test units at use stress tend to be

long and then the testing time may be very long. As a common approach to avoid

this problem, the accelerated life testings(ALTs) are widely used. Testing units
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are subjected to conditions of greater stress than use stress and then accelerated

life testing quickly yields information on test unit.

Widely used methods of applying stress to test units are constant-stress test,

step-stress test, varying-stress test. In step-stress testing, the stress on unfailed

units is allowed to change at preassigned times or upon occurrences of specified

number of failures until they fail. In an ordinary step-stress ALTs, the test units

are simultaneously put on a stress x1, and run until a preassigned time or

upon occurrences of fixed number of failures and the failure times of those

failing in this interval are observed. And then at the change point, surviving

units are subjected to the different(stronger in general) stress x2 , and so on.

There are three types of models that have been commonly used on analysis of

step-stress ALTs. They are the tampered random variable(TRV) model by

DeGroot and Goel(1979), the cumulative exposure(CE) model by Nelson(1980), the

tampered failure rate(TFR) model by Bhattacharyya and Soejoeti(1989).

Meeker(1984) discussed the design for Type I censored constant stress ALTs.

Nelson(1980, 1990) presented the cumulative exposure model and studied the

design to determine the optimal stress change time for two-step stress ALTs. Bai,

Kim and Lee(1989a, 1989b) extended their results to the case of Type Ⅰ

censoring. Bai and Chun(1991) studied optimum plan searching change time that

minimizes the sum of asymptotic variances of maximum likelihood estimators of

the log mean lifetime at the usual condition for Type censored two-step stressⅠ

ALTs. Bai and Chung(1992) studied two optimal designs for two-step stress and

constant stress partially ALTs under the tampered random variable model and

compared their performances. Moon(2004a, 2004b) studied the optimal designs for

M-level constant-stress ALTs with k-stress variables and the optimal design

for M-level constant-stress ALTs with a polynomial stress model under

Weibull distribution. Wu(2002) considered parameter estimations for the two

step-stress ALTs considering cumulative exposure model for a two-parameter

exponential distribution with Type censoring.Ⅱ

In this paper, we consider the parameter estimation for three step-stress

accelerated life tests, assuming that the lifetime of test units follows a

two-parameter exponential distribution under the tampered failure rate model. In

section 2, we describe the model and some necessary assumptions. Maximum

likelihood estimators of the parameters are obtained in section 3. The confidence

regions for the parameters are derived in section 4. In section 5, the proposed

inferential procedures are illustrated with a simulated data set.
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2. Model and Assumptions2. Model and Assumptions2. Model and Assumptions2. Model and Assumptions

For three step-stress ALTs, all test units are simultaneously run on use stress

x1 until a preassigned time τ1, but if all units do not fail before time τ1, the

surviving units are subjected to a stronger stress x2 and observed until time

τ2. For still functioning units at time τ2, the stress is also changed to a

more stronger stress x3 and units are observed until all units are failed.

By changing stresses at preassigned times, the failure rate functions at stresses

x2 and x3 are assumed to be expressed as the initial failure rate function

1/θ1 multiplied by unknown factors α 1 and α 2 . Acceleration factors α 1 and

α2 depend on stresses and possibly τ1 and τ2 . Also α 1 and α2 will be

greater than 1 because the effect of changing stresses to the higher level is

to subject test units to greater failure conditions.

Some useful notations in constructing maximum likelihood estimators are

introduced as follows.

(1) n i is the number of failed units at the stress x i , i = 1 ,2 ,3 .

(2) T ij is the lifetime of a unit at stress x i , j= 1 ,2 ,⋯ ,n i .
Suppose that the failure rate function of each test unit has the log-quadratic

relationship with the stress variable x i , which is given by

log
1
θ i
= β 0+β 1x i+ β 2x

2
i , i = 1 ,2 ,3 (1)

where β0 , β1 and β2 are unknown parameters.

By the TFR model under three step-stress ALTs, the distribution function of

lifetime which follows a two-parameter exponential distribution is given by

F ( t ) =











exp ( -
t-μ
θ 1

) if t ≤ τ 1 ,

exp ( -
τ 1 - μ

θ 1

-
t-τ 1
θ 2

) if τ 1 < t ≤ τ 2 ,

exp ( -
τ 1 - μ

θ 1

-
τ 2 - τ 1
θ 2

-
t-τ 2
θ 3

) if τ 2 < t .

Hence, the corresponding probability density function of lifetime is obtained by

f ( t ) =











1
θ 1

exp (-
t-μ
θ 1

) if t ≤ τ 1 ,

1
θ 2

exp (-
τ 1- μ

θ 1

-
t-τ 1
θ 2

) if τ 1 < t ≤ τ 2 ,

1
θ 3

exp (-
τ 1- μ

θ 1

-
τ 2- τ 1
θ 2

-
t-τ 2
θ 3

) if τ 2 < t .

(2)
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3. Maximum Likelihood Estimators of Parameters3. Maximum Likelihood Estimators of Parameters3. Maximum Likelihood Estimators of Parameters3. Maximum Likelihood Estimators of Parameters

Suppose that T 11<T 12<⋯<T 1n 1<T 21<⋯<T 2n 2<T 31<⋯<T 3n 3 are the lifetimes
of the test units observed to fail at stress x i , i = 1 ,2 ,3 , where

n= n 1+ n 2+ n 3 . Thus, the likelihood function for T ij , j= 1 ,2 ,⋯ ,n i ,
i = 1 ,2 ,3 is given by

L (θ 1,θ 2,θ 3) =
1

θ
n 1
1

1

θ
n 2
2

1

θ
n 3
3

exp[- 1
θ 1
(∑
n 1

j=1
t ij+(n-n 1)τ 1-n μ )]

× exp [- 1
θ 2
(∑
n 2

j= 1
t 2 j+(n-n 1-n 2 )τ 2-(n-n 1)τ 1)]

× exp [- 1
θ 3
( ∑
n 3

j= 1
t 3 j- (n-n 1-n 2)τ 2)] , t ij≥μ (3)

where n i>0 , i = 1 ,2 ,3 .

Since μ≤t 11<t 12<⋯< t 1n 1<t 21<⋯< t 2n 2<t 31<⋯< t 3n 3 , the MLE for μ is

μ̂ = T 11 . Substituting μ̂ for μ and (1) for θ1 and θ2 in (3), the

loglikelihood function is a function of unknown parameters β0 , β1 and β2

given by as follows:

log L (β 0,β 1,β 2)= n 1( β 0+β 1x 1+β 2x
2
1)+n 2( β 0+β 1x 2+β 2x

2
2)

+ n 3 ( β 0+β 1x 3+β 2x
2
3)-U 1 exp ( β 0+β 1x 1+β 2x

2
1)

-U 2 exp ( β 0+β 1x 2+β 2x
2
2)-U 3( β 0+β 1x 3+β 2x

2
3),

where U 1 = ∑
n 1

j= 1
t 1 j+ (n - n 1 )τ 1 - n μ̂ , (4)

U 2 = ∑
n 2

j= 1
t 2 j+ (n - n 1- n 2 )τ 2 - (n - n 1 )τ 1 , (5)

and

U 3 = ∑
n 3

j= 1
t 3 j- (n - n 1- n 2 )τ 2 . (6)

Differentiating the loglikelihood function in (3) for β0 , β1 and β2 and

letting
∂
∂β i

log L (β 0, β 1,β 2)= 0 , i = 0 ,1 ,2 , we can get the MLEs for β0 ,

β1 and β2 as follows:

β̂ 0 =
x 2x 3

(x 3-x 1)(x 2-x 1)
log

n 1
U 1

-
x 2x 3

(x 3-x 1)(x 2-x 1)
log

n 2
U 2

+
x 1x 2

(x 3-x 1)(x 3-x 2)
log

n 3
U 3

,
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β̂ 1= -
x 2+x 3

(x 3-x 1)(x 2-x 1)
log

n 1
U 1

+
x 1+x 3

(x 3-x 2)(x 2-x 1)
log

n 2
U 2

-
x 1+x 2

(x 3-x 1)(x 3-x 2)
log

n 3
U 3

,

β̂ 2=
1

(x 3-x 1)(x 2-x 1)
log

n 1
U 1

-
1

(x 3-x 2)(x 2-x 1)
log

n 2
U 2

+
1

(x 3-x 1)(x 3-x 2)
log

n 3
U 3

.

4. Confidence Regions4. Confidence Regions4. Confidence Regions4. Confidence Regions

The joint confidence regions for parameters μ , β0 , β1 and β2 are given

in this section. Let the random variables Y be defined as

Y =











T -μ
θ 1

, μ≤T <τ 1 ,

τ 1- μ

θ 1

+
T -τ 1
θ 2

, τ 1≤T <τ 2 ,

τ 1- μ

θ 1

+
τ 2- τ 1
θ 2

+
T -τ 2
θ 3

, τ 2≤T <∞ ,

(7)

where T has the probability density function in (2).

If y ≤
τ 1 - μ

θ 1

, then

P (Y≤y ) = P (T≤μ+ θ 1y )=
⌠
⌡

μ + θ 1y

μ

1
θ 1

e
-
t-μ
θ 1 dt

= 1 - e - y .

If
τ 1- μ

θ 1

< y ≤
τ 2- τ 1
θ 2

, then

P (Y≤y ) = P (μ≤T≤τ 1 )+ P (τ 1 <T ≤τ 1+ θ 2 (y-
τ 1- μ

θ 1

))

= ⌠⌡

τ 1

μ

1
θ 1

e
-
t-μ
θ 1 dt+ ⌠⌡

τ 1+ θ 2 (y-
τ 1- μ

θ 1

)

τ 1

1
θ 2

e
-
τ 1- μ

θ 1

-
t-τ 1
θ 2 dt

= 1 - e - y .

If y >
τ 2- τ 1
θ 2

, then
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P (Y≤y ) = P (μ≤T≤τ 1)+P (τ 1<T≤τ 2)+ P (T≤τ 2+θ 3(y-
τ 2- τ 1
θ 2

-
τ 1- μ

θ 1

))

= ⌠⌡

τ 1

μ

1
θ 1

e
-
t-μ
θ 1 dt+ ⌠⌡

τ 2

τ 1

1
θ 2

e
-
τ 1- μ

θ 1

-
t-τ 1
θ 2 dt

+ ⌠⌡

τ 2+ θ 3 (y-
τ 2- τ 1
θ 2

-
τ 1- μ

θ 1

)

τ 2

1
θ 3

e
-
τ 1- μ

θ 1

-
τ 2- τ 1
θ 2

-
t-τ 2
θ 3 dt

= 1 - e - y .

We can see that the random variable Y defined in (7) has an exponential

distribution with mean 1.

To derive the joint confidence regions for the parameters μ , β0 , β1 and

β2 , the following lemma is necessary.

Lemma 1.Lemma 1.Lemma 1.Lemma 1. Let Y ( 1 ) , Y ( 2 ) , ⋯ , Y ( r ) be the first r ordered

observations of a size n random sample from the exponential distribution

with mean 1. Let D = ∑
r

i = 1
Y ( i )+ ( n - r )Y ( r )- nY ( 1 ) . Then Y ( 1 ) and D are

independent, and 2nY ( 1 ) and 2D are distributed as χ 2(2) and χ 2(2 r- 2 ) ,

respectively.

Proof.Proof.Proof.Proof. Let Z 1 = nY ( 1 ) and Z i= (n - i+ 1 )( Y ( i )- Y ( i - 1 )) , i = 2 .3 .⋯ , r . Since

W = ∑
r

i = 1
Y ( i )+ (n - r )Y ( r )= ∑

r

i = 1
Z i

and the Jacobian is
( n - r )!
n !

, the joint probability density function of

Z 1 , Z 2,⋯ , Z r is given by

f ( z 1 , z 2 ,⋯ ,z r ) = exp ( - ∑
r

i = 1
z i ) .

Then Z 1, Z 2 ,⋯ , Z r are independent and identically distributed as an

exponential distribution with mean 1, and 2W has a chi-square distribution

with 2r d.f. Hence 2nY ( 1 )=2Z 1∼χ
2
(2) and 2D =2W -2Z 1= ∑

r

i= 2
Z i∼ χ

2
(2r- 2 ) .

The joint confidence region for μ and β0 , the joint confidence region for

μ and β1 , the joint confidence region for μ and β2 are given in next

three theorems.

Let F α ( ν 1, ν 2 ) be the upper α percentage point of the F distribution wit

ν1 and ν 2 degrees of freedom(d.f.) and let χ 2α( ν ) be the upper α

percentage point of the chi-square distribution with ν degrees of freedom.
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Theorem 1.Theorem 1.Theorem 1.Theorem 1. Suppose that T ij , j= 1 ,2 ,⋯ ,n i , i = 1 ,2 ,3 are the n ordered

failure times of a size n sample from a distribution with the probability

density function in (2). Then for any 0<α<1 , n 1>0 , n 2>0 and n3>0 , a

(1-α)×100% joint confidence region for μ and β2 are given as follows.

[ μ̂ - n 1 θ̂ 1

n (n 1- 1 )
F α

8
( 2 ,2n 1 - 2 )

< μ < μ̂ -
n 1 θ̂ 1

n (n 1- 1 )
F
1 -

α
8
( 2 ,2n 1 - 2 )

,

1
(x 3-x 1)(x 3-x 2)





 log ( 1
2U 3

(χ 21 - α
8
(2n - 2 )

-χ 2α
8
(2r- 2 )))- log







χ 2α
8
(2 )

2n ( μ̂-μ)













-
1

(x 2-x 1)(x 3-x 2)





 log( 1U 2
( 12 χ 2α

8
(2r- 2 )

-
U 1

2n ( μ̂- μ)
χ 2
1 -

α
8
(2 )))- log







χ 2
1 -

α
8
(2 )

2n ( μ̂ -μ)













< β 2 <

1
(x 3-x 1)(x 3-x 2)





 log( 1
2U 3

(χ 2α
8
(2n - 2)

-χ 2
1 -

α
8
(2r- 2 )))- log







χ 2
1-

α
8
(2 )

2n( μ̂-μ)













-
1

(x 2-x 1)(x 3-x 2)





 log( 1U 2
( 12 χ 21 - α

8
(2r- 2 )

-
U 1

2n ( μ̂- μ)
χ 2α
8
(2 )) )- log







χ 2α
8
(2 )

2n ( μ̂- μ)

















 ,

where U 1 ,U 2 and U 3 are defined in (4), (5) and (6), and r= n 1+ n 2 ,

μ̂ = T 11 and θ̂ 1=
1
n 1
[ ∑
n 1

j=1
T 1 j+(n-n 1)T 1n 1

- nT 11] , respectively.
Proof.Proof.Proof.Proof. Let the order statistic Y ( i ) , j = 1 , 2 ,⋯ ,n be defined as follows:

Y ( j ) =
T 1 j- μ

θ 1

, j = 1 , 2 ,⋯ ,n 1 , Y ( n 1+ j)
=
τ 1 - μ

θ 1

+
T 2 j- τ 1
θ 2

, j = 1 , 2 ,⋯ ,n 2 and

Y ( n 2 + j)
=
τ 1 - μ

θ 1

+
τ 2 - τ 1
θ 2

+
T 3 j- τ 2
θ 3

, j = 1 ,2 ,⋯ ,n 3 , where n= n 1+ n 2+ n 3 .

Then Y ( 1 )<Y ( 2 )<⋯ < Y ( n ) are the n order statistics from an exponential

distribution with mean 1. From Lemma 1, 2nY ( 1 )=
2n ( μ̂ - μ )
θ 1

has a

chi-square distribution with 2 d.f. Let D 1=
U 1

θ 1

+
U 2

θ 2

and

D 2=
U 1

θ 1

+
U 2

θ 2

+
U 3

θ 3

. Then D 1 = ∑
r

i = 1
Y ( i )+ (n - r )Y ( r )- nY ( 1 ) , where

r= n 1+ n 2 and D 2 = ∑
n

i = 1
Y ( i )- nY ( 1 ) , and hence, 2D1 has a chi-square

distribution with ( 2r- 2 ) d.f. and 2D2 has a chi-square distribution with

(2n - 2) d.f. from Lemma 1, and Y ( 1 ) and D 1 , D 2 are independent.

Furthermore, we only consider the ordered observations T 11,T 12,⋯ , T 1n 1
at

stress x1 and we can treat these observations as a Type- censored sampleⅡ
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from an exponential distribution with parameters μ and θ1 . By

Lawless(1982),
n (n 1- 1 )( μ̂ - μ )

n 1 θ̂ 1

has a F distribution with 2 and (2n 1-2)

d.f., where μ̂ = T 11 and θ̂ 1=
1
n 1
[ ∑
n 1 j

i= 1
T 1 j+ (n-n 1)T 1n 1

-nT 11] .

Now, we are going to derive a joint confidence region for μ and β2 with

confidence coefficient at least ( 1 - α ) , where 0<α<1 . By Bonferroni's

inequality(Ross(1976)), we have

1 -α ≤P (F 1 - α
8
(2, 2n 1 -2 )

<
n (n 1-1)( μ̂ - μ)

n 1 θ̂ 1

< F α
8
(2, 2n 1 -2 )

,

χ 2
1 -

α
8
(2 )
<
2n ( μ̂ - μ )
θ 1

< χ 2α
8
(2 )
, χ 2

1 -
α
8
(2r- 2 )

< 2 ( U 1

θ 1

+
U 2

θ 2
)< χ 2α

8
(2r- 2 )

,

χ 2
1 -

α
8
(2n - 2 )

< 2 ( U 1

θ 1

+
U 2

θ 2

+
U 3

θ 3
)< χ 2α

8
(2n - 2 ) )

≤P ( μ̂ - n 1 θ̂ 1

n (n 1- 1 )
F α

8
(2 , 2n 1 - 2 )

< μ < μ̂ -
n 1 θ̂ 1

n (n 1- 1 )
F
1 -

α
8
(2 , 2n 1 - 2 )

,

log







χ 2
1 -

α
8
( 2 )

2n ( μ̂ - μ )





 < β 0+ β 1x 1+ β 2x
2
1 < log







χ 2α
8
(2 )

2n ( μ̂ - μ )





,

log ( 1U 2
( 12 χ 21- α

8
(2r-2)

-
U 1

2n( μ̂-μ)
χ 2α
8
(2))) < β 0+β 1x 2+β 2x 22 <

log ( 1U 2
( 12 χ 2α

8
(2r-2)

-
U 1

2n( μ̂-μ)
χ 2
1-

α
8
(2))),

log ( 1
2U 3

(χ 21- α
8
(2n-2)

-χ 2α
8
(2r-2))) < β 0+β 1x 3+β 2x 23 <

log ( 1
2U 3

(χ 2α
8
(2n-2)

-χ 2
1-

α
8
(2r-2))))

≤P ( μ̂ - n 1 θ̂ 1

n (n 1- 1 )
F α

8
(2 , 2n 1 - 2 )

< μ < μ̂ -
n 1 θ̂ 1

n (n 1- 1 )
F
1 -

α
8
( 2 , 2n 1 - 2 )

,

1
(x 3-x 1)(x 3-x 2)





 log ( 1
2U 3

(χ 21 - α
8
(2n- 2 )

- χ 2α
8
(2r- 2 )))- log







χ 2α
8
(2 )

2n ( μ̂-μ)













-
1

(x 2-x 1)(x 3-x 2) ( log (
1
U 2

( 12 χ 2α
8
(2r- 2 )

-
U 1

2n ( μ̂ -μ)
χ 2
1 -

α
8
(2 ))) - log







χ 2
1 -

α
8
(2 )

2n ( μ̂ - μ)







< β 2 <

1
(x 3-x 1)(x 3-x 2)





 log ( 1
2U 3

(χ 2α
8
(2n - 2 )

-χ 2
1-

α
8
(2r- 2 )))- log







χ 2
1-

α
8
(2 )

2n ( μ̂-μ)













-
1

(x 2-x 1)(x 3-x 2) ( log (
1
U 2

( 12 χ 21 - α
8
(2r- 2 )

-
U 1

2n ( μ̂- μ)
χ 2α
8
(2 ))) - log







χ 2α
8
(2 )

2n ( μ̂ -μ)











.

This completes the proof.

Theorem 2.Theorem 2.Theorem 2.Theorem 2. Suppose that T ij , j= 1 ,2 ,⋯ ,n i , i = 1 ,2 ,3 are the n ordered

failure times of a size n sample from a distribution with the probability
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density function in (2). Then for any 0<α<1 , n 1>0, n 2>0 and n3>0 , the

(1-α)×100% joint confidence regions for μ and β1 are given as follows.

[ μ̂ - n 1 θ̂ 1

n (n 1- 1 )
F α

8
(2 ,2n 1 - 2 )

< μ < μ̂ -
n 1 θ̂ 1

n (n 1- 1 )
F
1 -

α
8
(2 ,2n 1 - 2 )

,

x 1+ x 3
(x 2-x 1)(x 3-x 2)





 log( 1U 2
( 12 χ 21 - α

8
(2r-2

-
U 1

2n ( μ̂-μ)
χ 2α
8
(2 )))- log







χ 2α
8
(2 )

2n( μ̂-μ)













-
x 1+ x 2

(x 3-x 1)(x 3-x 2)





 log ( 1
2U 3

(χ 2α
8
(2n - 2 )

- χ 2
1-

α
8
(2r- 2 )))- log







χ 2
1 -

α
8
(2 )

2n ( μ̂- μ)













< β 1 <

-
x 1+ x 3

(x 2-x 1)(x 3-x 2)





 log( 1U 2
( 12 χ 2α

8
(2r- 2 )

-
U 1

2n ( μ̂ -μ)
χ 2
1 -

α
8
(2 )) )- log







χ 2
1 -

α
8
(2 )

2n ( μ̂ -μ)













-
x 1+ x 2

(x 3-x 1)(x 3-x 2)





 log( 1
2U 3

(χ 21 - α
8
(2n- 2 )

- χ 2α
8
(2r- 2 )) )- log







χ 2α
8
( 2 )

2n ( μ̂ - μ)

















 ,

where U 1 ,U 2 and U 3 are defined in (4), (5) and (6), and r= n 1+ n 2 ,

μ̂ = T 11 and θ̂ 1=
1
n 1
[ ∑
n 1

j=1
T 1 j+(n-n 1)T 1n 1

- nT 11] , respectively.

Proof.Proof.Proof.Proof. From the proof of Theorem 1, 2nY ( 1 )=
2n ( μ̂ - μ )
θ 1

is distributed as

χ 2(2) , 2D1 is distributed as χ 2( 2r- 2 ) , 2D2 is distributed as χ 2( 2n- 2 ) and

n (n 1- 1 )( μ̂ - μ )

n 1 θ̂ 1

is distributed as F ( 2 , 2n 1 -2 )
, where D 1 and D 2 are

defined in Theorem 1. By Bonferroni's inequality(Ross(1976)), a joint

confidence region for μ and β1 with confidence coefficient at least ( 1 - α ) ,

where 0<α<1 , is derived.

Theorem 3.Theorem 3.Theorem 3.Theorem 3. Suppose that T ij , j= 1 ,2 ,⋯ ,n i , i = 1 ,2 ,3 are the n ordered

failure times of a size n sample from a distribution with the probability

density function in (2). Then for any 0<α<1 , n 1>0, n 2>0 and n3>0 , the

(1-α)×100% joint confidence regions for μ and β0 are given as follows.

[ μ̂ - n 1 θ̂ 1

n (n 1- 1 )
F α

8
(2 ,2n 1 - 2 )

< μ < μ̂ -
n 1 θ̂ 1

n (n 1- 1 )
F
1 -

α
8
(2 ,2n 1 - 2 )

,

x 2
(x 3-x 1)(x 3-x 2)





x 1 log ( 1
2U 3

(χ 21- α
8
(2n-2 )

-χ 2α
8
(2r-2 )))- x 3 log







χ 2α
8
(2 )

2n ( μ̂-μ)













-
x 3

(x 2-x 1)(x 3-x 2)





x 1 log ( 1U 2
( 12 χ 2α

8
(2r- 2)

-
U 1

2n( μ̂-μ)
χ 2
1 -

α
8
(2)))-x 2 log







χ 2
1-

α
8
(2 )

2n ( μ̂-μ)















Gyoung-Ae, Moon In-ho, Kim․1384

< β 0 <

x 2
(x 3-x 1)(x 3-x 2)





x 1 log ( 1
2U 3

(χ 2α
8
(2n-2 )

-χ 2
1-

α
8
(2r-2 )))-x 3 log







χ 2
1-

α
8
(2)

2n ( μ̂-μ)













-
x 3

(x 2-x 1)(x 3-x 2)





x 1 log ( 1U 2
( 12 χ 21 - α

8
(2r-2 )

-
U 1

2n ( μ̂-μ)
χ 2α
8
(2 )) )-x 2 log







χ 2α
8
(2 )

2n ( μ̂-μ)

















 ,

where U 1 ,U 2 and U 3 are defined in (4), (5) and (6), and r= n 1+ n 2 ,

μ̂ = T 11 and θ̂ 1=
1
n 1
[ ∑
n 1

j=1
T 1 j+(n-n 1)T 1n 1

- nT 11] , respectively.
Proof.Proof.Proof.Proof. From the proof of Theorem 1 and by Bonferroni's inequality(Ross(1976)),

the proof is completed.

5. A Numerical Example5. A Numerical Example5. A Numerical Example5. A Numerical Example

The 40 simulated sample from model (2) is given in Table 1 to illustrate the

use of joint confidence regions for μ , β 0 , β 1 and β2 . These data are

simulated from the exponential distribution with mean 1, and then transformed

by (7) to get the sample from (2) based on

β 0=-3.85135 , β 1= 0.8393 , β 2= 0.1216 a n d μ = 50 , x 1 = 0 .5 , x 2 = 1 .0 , x 3 = 2 .0

and τ 1= 53 , τ 2= 57 .

<Table 1> Simulated failure times

stress failure times

x1 50.48 50.99 51.36 51.42 52.81

x2
53.44 53.68 53.79 53.95 54.66 54.70

54.99 55.53 55.77 55.84 56.14 56.44

x3

57.10 57.39 57.40 57.58 57.63 57.93

58.11 58.13 58.42 58.43 58.59 58.61

58.85 59.29 59.52 59.56 59.57 60.33

61.19 61.21 61.61 61.62

The MLEs of μ , β0 , β1 and β2 are μ̂ = 50.48 , β̂ 0=- 3.51 , β̂ 1= 1.09 and

β̂ 2= 0.14 , respectively.

Now we construct 90% joint confidence regions for μ and β0 , μ and

β1 , μ and β2 . Note that



Parameter Estimation of the Two-Parameter Exponential Distribution

under Three Step-Stress Accelerated Life Test

1385

χ2(0.0125, 78)=108.6327 , χ2(0.9875, 78)=52.7203 , χ2(0.0125, 32)=52.5393 ,

χ2(0.9875, 32)=16.7959 , χ2(0.0125, 2)=8.7641 , χ2(0.9875, 2)=0.0252 ,

F ( 0.0125,2,32)= 7.9629 , F ( 0.9875, 2,32)=0.0126 .

Then by theorem 1, a 90% joint confidence region for μ and β2 is given as

follows.

[ 45.8682 < μ < 50.4760,

0.67(-2.7157- log ( 0.109650.48-μ ))-2 ( log (0.2286-
0.0003
50.48-μ )- log (

0.0003
50.48-μ ))

< β 2 <

0.67(-0.0103- log ( 0.000350.48-μ ))-2 ( log (0.0731-
0.0884
50.48-μ )- log (

0.1096
50.48-μ ))] .

And by theorem 2, a 90% joint confidence region for μ and β1 is given as

follows.

[ 45.8682 < μ < 50.4760,

5 ( log (0.0731- 0.088450.48-μ )- log (
0.1096
50.48-μ ))- (-0.0103- log (

0.0003
50.48-μ ))

< β 1 <

5 ( log (0.2286- 0.000350.48-μ )- log (
0.0003
50.48-μ ))- (-2.7157- log (

0.1096
50.48-μ ))] .

Finally by theorem 3, a 90% joint confidence region for μ and β0 is given

as follows.

[ 45.8682 < μ < 50.4760,

0.67(-1.3578-2× log ( 0.109650.48-μ ))-4 (0.5× log (0.2286-
0.0003
50.48-μ )- log (

0.0003
50.48-μ ))

< β 0 <

0.67(-0.0051-2× log ( 0.000350.48-μ ))-4 (0.5× log (0.0731-
0.0884
50.48-μ )- log (

0.1096
50.48-μ ))] .
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