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Abstract

In this paper, the maximum likelihood estimators for parameters are derived under
three step-stress accelerated life tests for Type-I hybrid censored data. The exponential
distribution and the cumulative exposure model are considered based on the assump-
tion that a log quadratic relationship exits between stress and the mean lifetime θ. The
test plan to search optimal stress change times minimizing the asymptotic variance of
maximum likelihood estimators are presented. A numerical example to illustrate the
proposed inferential procedures and some simulation results to investigate the sensitiv-
ity of the optimal stress change times by the guessed parameters are given.

Keywords: Accelerated life tests, cumulative exposure model, hybrid Type-I censoring,
maximum likelihood estimator, optimal test plan, step-stress.

1. Introduction

It takes too much time to get a lifetime of a reliable item under typical conditions because of
greatly improved units. The accelerated life tests (ALTs) are used in order to reduce the long
testing time, where test units are put on higher stress than usual stress to yield information
on test unit quickly. A model is fitted using data from ALTs and then extrapolated to make
inferences on the lifetimes under usual stress. The step-stress accelerated life test (SSALT) is
a kind of ALTs, where the stress are increased until a pre-specified time or upon occurrence
of a fixed number of failures.

The Type-I hybrid censoring scheme (HCS) is considered in this paper. The experiment
is completed at the time tr if the rth failure occurs before preassigned time τc. on the
other hand, the experiment is completed at the time τc in HCS. Thus, the experiment is
completed at the time τ∗ = min(τc, tr), where τc and r are predetermined. The total testing
time of HCS is at most τc, compared with the conventional Type-I censoring scheme. That
is why this is referred to as the Type-I HCS. If the experiment is completed at the time
τ∗ = max(τc, tr), it is referred to as Type-II HCS, because it assures at least r failures.

Some authors presented the results on the Type-I HCS. Bai et al. (1989) presented the
optimal plan to search the stress change time which minimizes the asymptotic variance of
MLE of the log scale parameter at the use stress. Balakrishnan and Han (2009) considered
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the C-optimality, D-optimality and A-optimality criteria for k-step-stress ALT with an equal
step duration under progressively Type-I censored data from exponential distribution. Bal-
akrishnan and Xie (2007) obtained the exact distribution of MLEs for a simple step-stress
model with Type-II hybrid censored data from the exponential distribution and a cumulative
exposure (CE) model. Childs et al. (2003) derived exact distribution of MLE of the mean
of the exponential distribution and an exact lower confidence bound based on Type-I and
Type-II hybrid censored sample. Chandrasekar et al. (2004) proposed generalized Type-I
and Type-II hybrid censoring scheme and derived the exact distribution of MLE as well as
exact confidence intervals for the mean of the exponential distribution. Gouno et al. (2004)
studied optimal k-step-stress ALT with an equal step duration for progressively Type-I cen-
sored data from exponential distribution. Ling et al. (2009) considered a simple step-stress
ALT model under progressive Type-I censoring scheme for the exponential distribution and
a cumulative exposure model. Ling et al. (2011) proposed the optimum plan for a step-stress
ALT with two stress variables under Type-I hybrid censoring scheme. Moon (2008) studied
the optimal plan with a grouped and censored data obtained from the three step-stress ALT
under the exponential distribution with a log-quadratic failure rate function of stress and
a tampered failure rate (TFR) model. Moon and Park (2009) presented the optimal plan
using data obtained from periodic inspection under type I censored three step stress ALT
with a log-linear failure rate function of stress and a TFR model. Moon (2012) obtained
MLEs and their confidence regions of parameters on the Type II censored three step-stress
ALT for two-parameter exponential distribution.

In this paper, the MLEs of model parameters for three step-stress ALT under the as-
sumption that a quadratic relationship exits between a stress and log(mean lifetime) for an
exponential distribution are derived and one of models that have been commonly used on
analysis of step-stress ALTs, the CE model proposed by Nelson (1980) is considered. In sec-
tion 2, the model and some assumptions are given and the MLEs of parameters are obtained
under three step-stress ALT in section 3. In section 4, the optimal plan to search optimal
stress change times which minimize the asymptotic variance of the MLE of logarithm of the
mean lifetime at the use stress. An example and some simulation results for the proposed
procedures are presented in section 5 and some conclusions are given in section 6.

2. Model and assumptions

Suppose that there are three step-stress with s0 < s1 < s2 < s3, where s0 is the use stress.
We use the notation in our results without loss of generality as follows.

xi =
si − s0
s3 − s0

, i = 1, 2, 3.

For the step-stress ALTs, all units are simultaneously put on stress x1 and examined until
a preassigned time τ1, but if all units do not fail before τ1, the unfailed units are put
on a stronger stress x2 and observed until time τ2. The remaining units at τ2 are also
put on a much stronger stress x3 and examined. The experiment is continued until time
τ∗ = min(τc, tr) in the Type-I HCS, where τ1, τ2, τc and r are preassigned beforehand.

Some assumptions and useful notations are introduced as follows.

(1) For any stress level xi, i = 1, 2, 3, the lifetime of test unit Tij , j = 1, 2, · · · , ni dis-
tributes as an exponential distribution with the mean lifetime θi.
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(2) Let n1 be the number of failures before the time τ1 at the stress x1, n2 be the number
of failures before the time τ2 at the stress x2, n3 be the number of failures before
the time τc at the stress x3. Let nt be the number of units that fail before the test
terminates. Then

nt =


n1 = r, tr ≤ τ1
n1 + n2 = r, τ1 < tr ≤ τ2
n1 + n2 + n3 = r, τ2 < tr ≤ τc
n1 + n2 + n3 < r, τc < tr <∞.

(3) The mean lifetime θi and each stress level xi are assumed to be a log-quadratic function.
That is,

log θi = β0 + β1xi + β2x
2
i , i = 1, 2, 3,

where β0, β1 and β2 are unknown model parameters.

(4) A CE model is assumed that the remaining lifetime of test unit depends on the present
CE.

By the assumption, the probability density function (PDF) for exponential distribution
and cumulative distribution function (CDF) at each stress level xi are given by

fi(t, θi) =
1

θi
exp

(
−
(
t

θi

))
,

Fi(t, θi) = 1− exp

(
−
(
t

θi

))
, i = 1, 2, 3, (2.1)

where t ≥ 0 and θi > 0. Then, under three SSALT, the cumulative exposure distribution
(CED), G(t) is given by

G(t) =


F1(t, θ1), 0 ≤ t < τ1

F2(t− τ1 + ν1, θ2), τ1 ≤ t < τ2

F3(t− τ2 + ν2, θ3), τ2 ≤ t <∞,
(2.2)

where Fi(·, θi) is given by (2.1), νi is the solution of Fi+1(νi, θi+1) = Fi((τi−τi−1)+νi−1, θi)
with ν1 = θ2

θ1
τ1 and ν2 = θ3

θ2
(τ2 − τ1) + θ3

θ1
τ1.

Thus, the CED, G(t) and the corresponding PDF, g(t) are given by

G(t) =


1− exp

(
− t
θ1

)
, 0 ≤ t < τ1

1− exp
(
− t−τ1θ2

− τ1
θ1

)
, τ1 ≤ t < τ2

1− exp
(
− t−τ2θ3

− τ2−τ1
θ2
− τ1

θ1

)
, τ2 ≤ t <∞,

(2.3)

g(t) =


1
θ1

exp
(
− t
θ1

)
, 0 ≤ t < τ1

1
θ2

exp
(
− t−τ1θ2

− τ1
θ1

)
, τ1 ≤ t < τ2

1
θ3

exp
(
− t−τ2θ3

− τ2−τ1
θ2
− τ1

θ1

)
, τ2 ≤ t <∞,

(2.4)

respectively.
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3. Maximum likelihood estimators and Fisher information matrix

In this section, the MLEs of the model parameters β0, β1, β2 by Newton-Rapshon method
are derived. From the CED in (2.3) and the PDF in (2.4), the likelihood function based on
observations tij , i = 1, 2, 3, j = 1, 2, · · · , ni at stress xi, i = 1, 2, 3 for the three cases under
the Type-I HCS are given as follows.

Case 1 : If tr ≤ τ1,

L(θ1, θ2, θ3) =

r∏
j=1

g1(t1j) [1−G1(tr)]
n−r

.

Case 2 : If τ1 ≤ tr < τ2 ,

L(θ1, θ2, θ3) =

n1∏
j=1

g1(t1j)

n2∏
j=1

g2(t2j) [1−G2(tr)]
n−r

.

Case 3 : If τ2 < tr <∞ ,

(i) tr ≤ τc,

L(θ1, θ2, θ3) =

n1∏
j=1

g1(t1j)

n2∏
j=1

g2(t2j)

n3∏
j=1

g3(t3j) [1−G3(tr)]
n−r

.

(ii) τc < tr ,

L(θ1, θ2, θ3) =

n1∏
j=1

g1(t1j)

n2∏
j=1

g2(t2j)

n3∏
j=1

g3(t3j) [1−G3(τc)]
n−(n1+n2+n3) .

Then, the likelihood function in Case 3 is given by

L(θ1, θ2, θ3) =

n1∏
j=1

g1(t1j)

n2∏
j=1

g2(t2j)

n3∏
j=1

g3(t3j) [1−G3(τ∗)]
n−(n1+n2+n3) .

From the likelihood function in above, we can observe the followings.
(1) The likelihood function in Case 1 is obtained as

L(θ1, θ2, θ3) =

r∏
j=1

1

θ1
exp

(
− t1j
θ1

)(
exp

(
− tr
θ1

))n−r
.

The MLEs of θ2 and θ3 do not exist in Case 1, because the likelihood function is independent
of θ2 and θ3.

(2) The likelihood function in Case 2 is obtained as

L(θ1, θ2, θ3) =

n1∏
j=1

1

θ1
exp

(
− t1j
θ1

) n2∏
j=1

1

θ2
exp

(
− t2j − τ1

θ2
− τ1
θ1

)

×
(

exp

(
− tr − τ1

θ2
− τ1
θ1

))n−r
.
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The MLE of θ3 does not exist in Case 2, because the likelihood function is independent of θ3.
Hence, the situation that no failures are observed at stress xi, i = 1, 2, 3 is not considered,
because the MLEs of parameters do not always exist.

Therefore, for τ2 < tr <∞, the likelihood function is obtained as

L(θ1, θ2, θ3) =

n1∏
j=1

1

θ1
exp

(
− t1j
θ1

) n2∏
j=1

1

θ2
exp

(
− t2j − τ1

θ2
− τ1
θ1

)

×
n3∏
j=1

1

θ3
exp

(
− t3j − τ2

θ3
− τ2 − τ1

θ2
− τ1
θ1

)

×
(

exp

(
−τ

∗ − τ2
θ3

− τ2 − τ1
θ2

− τ1
θ1

))n−(n1+n2+n3)

.

Then, the log-likelihood function of β0, β1 and β2 is given by

logL(β0, β1, β2) = −
3∑
i=1

[
ni
(
β0 + β1xi + β2x

2
i

)
+ Ui exp

(
−β0 − β1xi − β2x2i

)]
, (3.1)

where
U1 =

n1∑
j=1

t1j + (n− n1)τ1,

U2 =

n2∑
j=1

(t2j − τ1) + (n− (n1 + n2))(τ2 − τ1),

U3 =

n3∑
j=1

(t3j − τ2) + (n− (n1 + n2 + n3))(τ∗ − τ2).

The MLEs for model parameters β0, β1 and β2 can be obtained by solving the following
equation in (3.2) using the Newton-Raphson method.

∂ logL(β0, β1, β2)

∂βk
= −

3∑
i=1

[
nix

k
i − xkiDi exp

(
−β0 − β1xi − β2x2i

)]
= 0, k = 0, 1, 2. (3.2)

The second partial and mixed derivatives of logL(β0, β1, β2) in (3.1) with respect to β0,
β1 and β2 are given as follows.

∂2 logL(β0, β1, β2)

∂βk∂βl
= −

3∑
i=1

xk+li Di exp
(
−β0 − β1xi − β2x2i

)
, k, l = 0, 1, 2. (3.3)

The Fisher information matrix F = (fkl), k, l = 0, 1, 2 is obtained by taking the means of
the second partial and mixed derivatives of logL(β0, β1, β2) in (3.3). Therefore, the Fisher
information matrix is given by

F = n

f00 f01 f02
f10 f11 f12
f20 f21 f22

 ,
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where, for k, l = 0, 1, 2,

fkl =− E
(
∂2 logL(β0, β1, β2)

∂βk∂βl

)
=

3∑
i=1

xk+li (1−Ai−2)(1−Ai−1)Ai,

Ai =1− exp

(
−τi − τi−1

θi

)
, i = 1, 2, 3 and τ3 = τ∗, τ0 = 0. (3.4)

4. Optimal plan for three SSALT

In this section, the optimal plan of the three SSALT is presented, which is very important
to improve the precision of MLEs of model parameters and the quality of the statistical
inference at the use stress.

Let V =
(
v2kl
)

be the covariance matrix, F−1 of β̂0 , β̂1 and β̂2. Then the asymptotic

variance (AsVar) for log θ̂i = β̂0 + β̂1xi + β̂2x
2
i is given by

σ2
i =(1, xi, x

2
i )V (1, xi, x

2
i )
′

=v200 + x2i v
2
11 + x4i v

2
22 + 2xiv

2
01 + 2x2i v

2
02 + 2x3i v

2
12, i = 1, 2, 3.

Then,

σ2
0 = nAsVar(log θ̂0) =

d21
A1

+
d22

(1−A1)A2
+

d23
(1−A1)(1−A2)A3

, (4.1)

where Ai, i = 1, 2, 3 are given in (3.4) and

d1 =
x2x3

(x2 − x1)(x3 − x1)
, d2 =

x1x3
(x2 − x1)(x3 − x2)

, d3 =
x1x2

(x3 − x1)(x3 − x2)
.

The optimal plan under the three SSALT is to find the optimal stress change times based
on the minimization of the asymptotic variance, nAsVar(log θ̂0) in (4.1). Hence, the optimal
stress change times τ∗1 and τ∗2 are obtained by solving the following equations given by

∂σ2
0

∂τ1
= 0 and

∂σ2
0

∂τ2
= 0,

where
∂σ2

0

∂τ1
=− d21(1−A1)

A2
1θ1

+
d22

(1−A1)A2
2

(
A2

θ1
+

1−A2

θ2

)
+

d23
(1−A1)(1−A2)A3

(
1

θ1
− 1

θ2

)
,

∂σ2
0

∂τ2
=− d22(1−A2)

(1−A1)A2
2θ2

+
d23

(1−A1)(1−A2)A2
3

(
A3

θ2
+

1−A3

θ3

)
. (4.2)

Theorem 4.1 Optimal stress change times, τ∗1 and τ∗2 minimizing σ2
0 , the asymptotic vari-

ance of log θ̂0 are the unique solutions of (4.2).
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Proof : (4.2) can be obtained by equating the first derivative of σ2
0 with respect to τ1 and

τ2 to zero. To show that σ2
0 has the minimum value at τ∗1 and τ∗2 , it is sufficient to prove

that the determinant of the second order partial derivatives matrix H is positive definite by
showing that two conditions are satisfied, which are given by

∂2σ2
0

∂τ21
> 0 and |H| > 0,

where

H =

 ∂2σ2
0

∂τ2
1

∂2σ2
0

∂τ1∂τ2
∂2σ2

0

∂τ2
2

 .

The second order partial derivative of σ2
0 with respect to τ1 is given by

∂2σ2
0

∂τ21
=
d21(1−A1)(2−A1)

θ21A
3
1

+
d22

θ1(1−A1)A2
2

(
A2

θ1
+

1−A2

θ2

)
+

d22(1−A2)

θ2(1−A1)A3
2

(
A2

θ1
+

2−A2

θ2

)
+

d23
(1−A1)(1−A2)A3

(
1

θ1
− 1

θ2

)2

,

which is positive by 1 − Ai > 0, 2 − Ai > 0 for i = 1, 2 and the determinant of the second
order partial derivatives matrix H is given by

|H| =d21d
2
2(1−A2)2(2−A2)

θ21θ
2
2A

3
1A

3
2

+
d21d

2
3

θ21θ2A
3
1A

2
3

(
A3

θ2
+

1−A3

θ3

)
+
d21d

2
3(1−A3)

θ22θ3A
3
1A

3
3

(
A3

θ2
+

2−A3

θ3

)
+

d22d
2
3

θ1(1−A1)2(1−A2)A3
2A

2
3

(
A3

θ2
+

1−A3

θ3

)(
A2(2−A2)

θ21
+

(1−A2)(4−A2)

θ1θ2

)
+

d22d
2
3(1−A3)

θ3(1−A1)2(1−A2)A3
2A

3
3

(
A3

θ2
+

2−A3

θ3

)(
A2

2

θ21
+

2A2(1−A2)

θ1θ2
+

(1−A2)(2−A2)

θ22

)
+

d42A
2
2(1−A2)

θ21θ
2
2(1−A1)2A6

2

+
d43(1−A3)

θ23(1−A1)2(1−A2)2A4
3

(
1

θ1
− 1

θ2

)2

,

which is also positive. Therefore, we can see that the unique solution satisfying (4.2) exists
and minimize the asymptotic variance given in (4.1). �

But, the solutions of (4.2) are not in closed forms.

5. Numerical example and simulation studies

In this section, a numerical example is first presented to illustrate the procedure of pro-
posed optimal plan and some simulation results are presented to compare the performances
for different values of θ1, θ2 and θ3 .

5.1. Example

The n = 30 simulated failure times from three SSALT are generated based on model
parameters β0 = 2.0, β1 = −2.0, β2 = −2.0, three stress level x0 = 0, x1 = 0.35, x2 = 0.65,
x3 = 1.0 and τ1 = 1.237, τ2 = 1.430. Then θ1 = 2.872, θ2 = 0.865 and θ3 = 0.135 are
obtained by the relationship log θi = β0 + β1xi + β2x

2
i , i = 1, 2, 3.
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A sample Y is first simulated from the exponential distribution with mean 1. Then the
sample from GED G(t) in (2.3) is obtained from the transformation given by

T =


θ1 · Y, 0 ≤ Y < τ1

θ1

τ1 +
(
Y − τ1

θ1

)
· θ2, τ1

θ1
≤ Y < τ2

θ1

τ2 +
(
Y − τ1

θ1
− τ2−τ1

θ2

)
· θ3, τ2

θ1
≤ Y <∞.

(5.1)

The sample generated from model (2.3) using (5.1) is presented in Table 5.1.

Table 5.1 Simulated failure times
stress level failure times

x1 0.037 0.099 0.307 0.308 0.314 0.344 0.389 0.484 0.765 0.986
x2 1.304 1.325 1.352 1.357
x3 1.439 1.467 1.472 1.485 1.510 1.524 1.543 1.551 1.562 1.582

1.606 1.668 1.758 1.764 1.805 1.902

Table 5.2 MLEs and optimal stress change times

(τc , r) τ∗ θ̂1 θ̂2 θ̂3 τ∗1 τ∗2
(1.57,24) 1.570 2.878 0.869 0.184 0.860 1.446
(1.80,24) 1.582 2.878 0.869 0.175 0.866 1.460

The optimal stress change times τ∗1 and τ∗2 for three SSALT can be obtained from (3.2),
(3.4) and (4.1) based on the Type-I HCS. They are given for different censoring times in
Table 5.2.

5.2. Simulation studies

In order to use this optimal plan, unknown parameters θi, i = 1, 2, 3 must be approximated
by the past data set. However, inaccurate pre-estimated values may not lead to optimal stress
change times and result in poor estimators of parameters at the use stress. Thus the effects
of changes in values of the pre-estimated θ1, θ2 and θ3 for two different censoring times are
examined to investigate the performances of the optimal stress change times, τ∗1 and τ∗2 and
the results are presented in Table 5.3-Table 5.5, where θ1 = 2.872, θ2 = 0.865 and θ3 = 0.135
and τ∗ti, i = 1, 2 means the true optimal stress change times for true values of θi under the
various Type-I HCS.

Table 5.3 Optimal stress change times for different θ1 and θ2 values when θ3 = 0.13
θ2 0.8 0.85 0.9 0.95

(τc , r) τ∗ (τ∗t1, τ
∗
t2) θ1 (τ∗1 , τ∗2 ) (τ∗1 , τ∗2 ) (τ∗1 , τ∗2 ) (τ∗1 , τ∗2 )

(1.57,21) 1.543 (0.855,1.438)

2.7 (0.851,1.432) (0.840,1.436) (0.830,1.438) (0.821,1.441)
2.8 (0.862,1.435) (0.852,1.438) (0.841,1.441) (0.832,1.443)
2.9 (0.873,1.437) (0.862,1.440) (0.852,1.443) (0.842,1.445)
3.0 (0.883,1.440) (0.872,1.442) (0.862,1.445) (0.852,1.447)

(1.57,24) 1.570 (0.868,1.462)

2.7 (0.864,1.456) (0.853,1.459) (0.843,1.462) (0.833,1.465)
2.8 (0.876,1.459) (0.865,1.462) (0.854,1.465) (0.844,1.467)
2.9 (0.886,1.461) (0.875,1.464) (0.865,1.467) (0.855,1.469)
3.0 (0.897,1.464) (0.886,1.466) (0.875,1.469) (0.866,1.471)

(1.57,27) 1.570 (0.868,1.462)

2.7 (0.864,1.456) (0.853,1.459) (0.843,1.462) (0.833,1.465)
2.8 (0.876,1.459) (0.865,1.462) (0.854,1.465) (0.844,1.467)
2.9 (0.886,1.461) (0.875,1.464) (0.865,1.467) (0.855,1.469)
3.0 (0.897,1.464) (0.886,1.466) (0.875,1.469) (0.866,1.471)

(1.80,24) 1.582 (0.874,1.473)

2.7 (0.870,1.467) (0.859,1.470) (0.848,1.473) (0.838,1.476)
2.8 (0.882,1.470) (0.870,1.473) (0.860,1.476) (0.850,1.478)
2.9 (0.893,1.472) (0.881,1.475) (0.871,1.478) (0.861,1.480)
3.0 (0.903,1.474) (0.892,1.477) (0.881,1.480) (0.872,1.482)

(1.80,27) 1.758 (0.958,1.629)

2.7 (0.953,1.621) (0.940,1.625) (0.928,1.629) (0.917,1.632)
2.8 (0.966,1.624) (0.954,1.628) (0.942,1.632) (0.931,1.635)
2.9 (0.979,1.627) (0.967,1.631) (0.955,1.635) (0.944,1.638)
3.0 (0.991,1.630) (0.979,1.634) (0.967,1.637) (0.956,1.640)

(1.80,30) 1.800 (0.978,1.665)

2.7 (0.972,1.657) (0.959,1.661) (0.947,1.665) (0.936,1.669)
2.8 (0.986,1.660) (0.973,1.665) (0.961,1.668) (0.950,1.672)
2.9 (0.999,1.664) (0.986,1.668) (0.974,1.671) (0.963,1.675)
3.0 (1.012,1.667) (0.999,1.671) (0.987,1.674) (0.975,1.678)
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Table 5.4 Optimal stress change times for different θ1 and θ2 values when θ3 = 0.16
θ2 0.8 0.85 0.9 0.95

(τc , r) τ∗ (τ∗t1, τ
∗
t2) θ1 (τ∗1 , τ∗2 ) (τ∗1 , τ∗2 ) (τ∗1 , τ∗2 ) (τ∗1 , τ∗2 )

(1.57,21) 1.543 (0.855,1.438)

2.7 (0.846,1.421) (0.835,1.424) (0.825,1.427) (0.816,1.430)
2.8 (0.857,1.424) (0.847,1.427) (0.837,1.430) (0.827,1.433)
2.9 (0.868,1.426) (0.857,1.429) (0.847,1.432) (0.838,1.435)
3.0 (0.878,1.429) (0.867,1.432) (0.857,1.434) (0.848,1.437)

(1.57,24) 1.570 (0.868,1.462)

2.7 (0.859,1.444) (0.848,1.448) (0.838,1.451) (0.828,1.454)
2.8 (0.870,1.447) (0.859,1.451) (0.849,1.454) (0.840,1.457)
2.9 (0.881,1.450) (0.870,1.453) (0.860,1.456) (0.851,1.459)
3.0 (0.892,1.452) (0.881,1.456) (0.871,1.458) (0.861,1.461)

(1.57,27) 1.570 (0.868,1.462)

2.7 (0.859,1.444) (0.848,1.448) (0.838,1.451) (0.828,1.454)
2.8 (0.870,1.447) (0.859,1.451) (0.849,1.454) (0.840,1.457)
2.9 (0.881,1.450) (0.870,1.453) (0.860,1.456) (0.851,1.459)
3.0 (0.892,1.452) (0.881,1.456) (0.871,1.458) (0.861,1.461)

(1.80,24) 1.582 (0.874,1.473)

2.7 (0.865,1.455) (0.854,1.459) (0.843,1.462) (0.834,1.465)
2.8 (0.876,1.458) (0.865,1.461) (0.855,1.465) (0.845,1.467)
2.9 (0.887,1.461) (0.876,1.464) (0.866,1.467) (0.856,1.470)
3.0 (0.898,1.463) (0.887,1.466) (0.877,1.469) (0.867,1.472)

(1.80,27) 1.758 (0.958,1.629)

2.7 (0.946,1.606) (0.934,1.611) (0.923,1.615) (0.912,1.619)
2.8 (0.960,1.610) (0.948,1.614) (0.936,1.618) (0.925,1.622)
2.9 (0.973,1.613) (0.961,1.618) (0.949,1.622) (0.938,1.625)
3.0 (0.985,1.617) (0.973,1.621) (0.961,1.624) (0.950,1.628)

(1.80,30) 1.800 (0.978,1.665)

2.7 (0.965,1.642) (0.953,1.647) (0.941,1.651) (0.930,1.655)
2.8 (0.980,1.646) (0.967,1.650) (0.955,1.655) (0.944,1.659)
2.9 (0.993,1.649) (0.980,1.654) (0.968,1.658) (0.957,1.662)
3.0 (1.006,1.653) (0.993,1.657) (0.981,1.661) (0.970,1.665)

Table 5.5 Optimal stress change times for different θ1 and θ2 values when θ3 = 0.19
θ2 0.8 0.85 0.9 0.95

(τc , r) τ∗ (τ∗t1, τ
∗
t2) θ1 (τ∗1 , τ∗2 ) (τ∗1 , τ∗2 ) (τ∗1 , τ∗2 ) (τ∗1 , τ∗2 )

(1.57,21) 1.543 (0.855,1.438)

2.7 (0.841,1.411) (0.831,1.414) (0.821,1.418) (0.812,1.421)
2.8 (0.853,1.414) (0.842,1.417) (0.832,1.420) (0.823,1.423)
2.9 (0.863,1.416) (0.853,1.420) (0.843,1.423) (0.834,1.426)
3.0 (0.873,1.419) (0.863,1.422) (0.853,1.425) (0.844,1.428)

(1.57,24) 1.570 (0.868,1.462)

2.7 (0.854,1.434) (0.843,1.438) (0.833,1.441) (0.824,1.444)
2.8 (0.866,1.437) (0.855,1.441) (0.845,1.444) (0.835,1.447)
2.9 (0.876,1.440) (0.866,1.443) (0.856,1.447) (0.846,1.449)
3.0 (0.887,1.443) (0.876,1.446) (0.866,1.449) (0.857,1.452)

(1.57,27) 1.570 (0.868,1.462)

2.7 (0.854,1.434) (0.843,1.438) (0.833,1.441) (0.824,1.444)
2.8 (0.866,1.437) (0.855,1.441) (0.845,1.444) (0.835,1.447)
2.9 (0.876,1.440) (0.866,1.443) (0.856,1.447) (0.846,1.449)
3.0 (0.887,1.443) (0.876,1.446) (0.866,1.449) (0.857,1.452)

(1.80,24) 1.582 (0.874,1.473)

2.7 (0.860,1.444) (0.849,1.448) (0.839,1.452) (0.829,1.455)
2.8 (0.871,1.448) (0.861,1.451) (0.851,1.455) (0.841,1.458)
2.9 (0.883,1.450) (0.872,1.454) (0.862,1.457) (0.852,1.460)
3.0 (0.893,1.453) (0.882,1.457) (0.872,1.460) (0.863,1.463)

(1.80,27) 1.758 (0.958,1.629)

2.7 (0.941,1.593) (0.929,1.598) (0.917,1.603) (0.907,1.607)
2.8 (0.954,1.597) (0.942,1.602) (0.931,1.607) (0.920,1.611)
2.9 (0.967,1.601) (0.955,1.606) (0.944,1.610) (0.933,1.614)
3.0 (0.980,1.605) (0.968,1.609) (0.956,1.613) (0.945,1.617)

(1.80,30) 1.800 (0.978,1.665)

2.7 (0.960,1.628) (0.947,1.634) (0.936,1.639) (0.925,1.643)
2.8 (0.974,1.633) (0.961,1.638) (0.950,1.642) (0.939,1.647)
2.9 (0.987,1.637) (0.975,1.641) (0.963,1.646) (0.952,1.650)
3.0 (1.000,1.640) (0.987,1.645) (0.976,1.649) (0.965,1.653)

From Table 5.3-Table 5.5, we can see that the optimal stress change time τ∗1 and τ∗2
increase as τ∗ increases. The optimal stress change time τ∗1 increases as θ1 increases and
decrease as θ2 increases, and τ∗2 increase as θ1 or θ2 increases. But, τ∗1 and τ∗2 decrease as
θ3 increases. If pre-estimated values of θ1 and θ2 are less than 2% far from true values as
a relative error, they have less than 1% effect on τ∗1 and less than 1.5% on τ∗2 regardless of
θ3. If pre-estimated values of θ1 and θ2 are less than 5% and θ3 is less than 20% far from
true values, they have less than 2.5% effect on τ∗1 , but less than 1% on τ∗2 . If pre-estimated
values of θ1 and θ2 are about 10% far from true values, they have less than 5% effect on τ∗1
and less than 1% on τ∗2 when the pre-estimated θ3 is less than 20% far from true values, but
τ∗1 has about 5.5% effect on τ∗1 and less than 1.5% on τ∗2 when the pre-estimated value of
θ3 is about 40% far from true values. On the whole, τ∗2 is not sensitive to the pre-estimated
values of θ1, θ2 and θ3. On the other hand, τ∗1 is affected slightly if the pre-estimated values
of θ1 and θ2 are larger than 10% far from true values. τ∗1 and τ∗2 are not nearly affected by
the pre-estimated value of θ3.
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6. Conclusion

In this paper, the MLEs of model parameters θi, i = 1, 2, 3 are derived, when the lifetime,
Tij , j = 1, 2, · · · , ni of failures on stress xi follows an exponential distribution with mean
lifetime θi for the three SSALT based on Type-I HCS. The optimal plan to search the optimal
stress change times τ∗1 and τ∗2 minimizing the asymptotic variance of logθ̂0 on the use stress
is presented based on the MLEs of model parameters and the Fisher information matrix.
By simulation results, we can see that the pre-estimated values of θ1, θ2 and θ3 have a small
effect on the optimal stress change times.
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