• 제목/요약/키워드: License plate detection

검색결과 108건 처리시간 3.117초

A Study on the License Plate Recognition Based on Direction Normalization and CNN Deep Learning (방향 정규화 및 CNN 딥러닝 기반 차량 번호판 인식에 관한 연구)

  • Ki, Jaewon;Cho, Seongwon
    • Journal of Korea Multimedia Society
    • /
    • 제25권4호
    • /
    • pp.568-574
    • /
    • 2022
  • In this paper, direction normalization and CNN deep learning are used to develop a more reliable license plate recognition system. The existing license plate recognition system consists of three main modules: license plate detection module, character segmentation module, and character recognition module. The proposed system minimizes recognition error by adding a direction normalization module when a detected license plate is inclined. Experimental results show the superiority of the proposed method in comparison to the previous system.

RBFNNs-based Recognition System of Vehicle License Plate Using Distortion Correction and Local Binarization (왜곡 보정과 지역 이진화를 이용한 RBFNNs 기반 차량 번호판 인식 시스템)

  • Kim, Sun-Hwan;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제65권9호
    • /
    • pp.1531-1540
    • /
    • 2016
  • In this paper, we propose vehicle license plate recognition system based on Radial Basis Function Neural Networks (RBFNNs) with the use of local binarization functions and canny edge algorithm. In order to detect the area of license plate and also recognize license plate numbers, binary images are generated by using local binarization methods, which consider local brightness, and canny edge detection. The generated binary images provide information related to the size and the position of license plate. Additionally, image warping is used to compensate the distortion of images obtained from the side. After extracting license plate numbers, the dimensionality of number images is reduced through Principal Component Analysis (PCA) and is used as input variables to RBFNNs. Particle Swarm Optimization (PSO) algorithm is used to optimize a number of essential parameters needed to improve the accuracy of RBFNNs. Those optimized parameters include the number of clusters and the fuzzification coefficient used in the FCM algorithm, and the orders of polynomial of networks. Image data sets are obtained by changing the distance between stationary vehicle and camera and then used to evaluate the performance of the proposed system.

Vehicle License Plate Recognition System Using the Cautious Classifier and the Weighted Instance Method (신중한 분류기와 학습 예제 가중치 조정을 이용한 차량번호판인식시스템의 인식성능 향상 방안)

  • Baik, Nam Cheol;Lee, Sang Hyup;Ryu, Kwang Ryul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제26권4D호
    • /
    • pp.549-551
    • /
    • 2006
  • Vehicle License Plate Recognition System reads information from vehicles license plate using image detection devices. Of many applications provided by Vehicle License Plate Recognition System, some, such as speed enforcing system, can be problematic when the system incorrectly scans letters or numbers from a vehicle's license plate. Using Cautious Classifier avoids such problems by discarding the scanned information when the confidence level is doubted to be low. This study develops the License Plate Recognition System using Cautious Classifier and investigates effectiveness of applying the Weighted Instance Method to improve the performance of Cautious Classifier.

Learning-based approach for License Plate Recognition System (학습 기반의 자동차 번호판 인식 시스템)

  • 김종배;김갑기;김광인;박민호;김항준
    • Journal of the Institute of Convergence Signal Processing
    • /
    • 제2권1호
    • /
    • pp.1-11
    • /
    • 2001
  • This paper presents a learning-based approach for the construction of license Plate recognition system. The system consist of three modules. They are respectively, car detection module, license plate recognition module and recognition module. Car detection module detects a car in the given image sequence obtained from the camera with simple color-based approach. Segmentation module extracts the license plate in detect car image using neural network as filters for analyzing the color and texture properties of license plate. Recognition module then reads characters in detected license plate with support vector machine (SVM)-based characters recognizer. The system has been tested from parking lot and tollgate, etc. and have show the following performances on average: Car detect rate 100%, segmentation rate 97.5%, and character recognition rate about 97.2%. Overall system performances is 94.7% and processing time is one sec. Then our propose system does well using real world.

  • PDF

A License Plate Detection Method Using Multiple-Color Model and Character Layout Information in Complex Background (다중색상 모델과 문자배치 정보를 이용한 복잡한 배경 영상에서의 자동차 번호판 추출)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • 제11권11호
    • /
    • pp.1515-1524
    • /
    • 2008
  • This paper proposes a method that detects a license plate in complex background using a multiple-color model and character layout information. A layout of a green license plate is different from that of a white license plate. So, this study used a strategy that firstly assumes the plate color and then utilizes its layout information. At first, it extracts green areas from an input image using a multiple-color model which combined HIS and YIQ color models with RGB color model. If green areas are detected, it searches the character layout of the green plate by analyzing the connected components in each areas. If not detected, it searches the character layout of the white plate in all area. Finally, it extracts a license plate by grouping the connected components which corresponds to characters. Experimental result shows that 98.1% of 419 input images are correctly detected. It also shows that the proposed method is robust against illumination, shadow, and weather condition.

  • PDF

Precise Detection of Car License Plates by Locating Main Characters

  • Lee, Dae-Ho;Choi, Jin-Hyuk
    • Journal of the Optical Society of Korea
    • /
    • 제14권4호
    • /
    • pp.376-382
    • /
    • 2010
  • We propose a novel method to precisely detect car license plates by locating main characters, which are printed with large font size. The regions of the main characters are directly detected without detecting the plate region boundaries, so that license regions can be detected more precisely than by other existing methods. To generate a binary image, multiple thresholds are applied, and segmented regions are selected from multiple binarized images by a criterion of size and compactness. We do not employ any character matching methods, so that many candidates for main character groups are detected; thus, we use a neural network to reject non-main character groups from the candidates. The relation of the character regions and the intensity statistics are used as the input to the neural network for classification. The detection performance has been investigated on real images captured under various illumination conditions for 1000 vehicles. 980 plates were correctly detected, and almost all non-detected plates were so stained that their characters could not be isolated for character recognition. In addition, the processing time is fast enough for a commercial automatic license plate recognition system. Therefore, the proposed method can be used for recognition systems with high performance and fast processing.

A Method of License Plate Location and Character Recognition based on CNN

  • Fang, Wei;Yi, Weinan;Pang, Lin;Hou, Shuonan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권8호
    • /
    • pp.3488-3500
    • /
    • 2020
  • At the present time, the economy continues to flourish, and private cars have become the means of choice for most people. Therefore, the license plate recognition technology has become an indispensable part of intelligent transportation, with research and application value. In recent years, the convolution neural network for image classification is an application of deep learning on image processing. This paper proposes a strategy to improve the YOLO model by studying the deep learning convolutional neural network (CNN) and related target detection methods, and combines the OpenCV and TensorFlow frameworks to achieve efficient recognition of license plate characters. The experimental results show that target detection method based on YOLO is beneficial to shorten the training process and achieve a good level of accuracy.

Rear Car License plate Detection of One More Cars (다수 차량의 후면 번호판 추출)

  • Kim Young-Baek;Rhee Sang-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제12권4호
    • /
    • pp.400-404
    • /
    • 2006
  • We suggest a method to detect rear car license plate of one more cars by using blobs. First, we try to search all of the blobs from an input image based on the difference between objects and background. Second, we obtain rectangles enclosed the blobs, and rectangle clusters by considering the properties, for example, the number, size, distance, position. Third, the cluster is verified by the Support Vector Machine. Even if we only use the adaptive binarization as the preprocessing, the detection ratio is very high.

License Plate Detection with Improved Adaboost Learning based on Newton's Optimization and MCT (뉴턴 최적화를 통해 개선된 아다부스트 훈련과 MCT 특징을 이용한 번호판 검출)

  • Lee, Young-Hyun;Kim, Dae-Hun;Ko, Han-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • 제17권12호
    • /
    • pp.71-82
    • /
    • 2012
  • In this paper, we propose a license plate detection method with improved Adaboost learning and MCT (Modified Census Transform). The MCT represents the local structure patterns as integer numbered feature values which has robustness to illumination change and memory efficiency. However, since these integer values are discrete, a lookup table is needed to design a weak classifier for Adaboost learning. Some previous research efforts have focused on minimization of exponential criterion for Adaboost optimization. In this paper, a method that uses MCT and improved Adaboost learning based on Newton's optimization to exponential criterion is proposed for license plate detection. Experimental results on license patch images and field images demonstrate that the proposed method yields higher performance of detection rates with low false positives than the conventional method using the original Adaboost learning.

Parking Lot Occupancy Detection using Deep Learning and Fisheye Camera for AIoT System

  • To Xuan Dung;Seongwon Cho
    • Smart Media Journal
    • /
    • 제13권1호
    • /
    • pp.24-35
    • /
    • 2024
  • The combination of Artificial Intelligence and the Internet of Things (AIoT) has gained significant popularity. Deep neural networks (DNNs) have demonstrated remarkable success in various applications. However, deploying complex AI models on embedded boards can pose challenges due to computational limitations and model complexity. This paper presents an AIoT-based system for smart parking lots using edge devices. Our approach involves developing a detection model and a decision tree for occupancy status classification. Specifically, we utilize YOLOv5 for car license plate (LP) detection by verifying the position of the license plate within the parking space.